These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 29182326)
1. Phase Inversion Directly Induced Tight Ultrafiltration (UF) Hollow Fiber Membranes for Effective Removal of Textile Dyes. Han G; Feng Y; Chung TS; Weber M; Maletzko C Environ Sci Technol; 2017 Dec; 51(24):14254-14261. PubMed ID: 29182326 [TBL] [Abstract][Full Text] [Related]
2. Low-Pressure Nanofiltration Hollow Fiber Membranes for Effective Fractionation of Dyes and Inorganic Salts in Textile Wastewater. Han G; Chung TS; Weber M; Maletzko C Environ Sci Technol; 2018 Mar; 52(6):3676-3684. PubMed ID: 29470059 [TBL] [Abstract][Full Text] [Related]
3. Conventional Ultrafiltration As Effective Strategy for Dye/Salt Fractionation in Textile Wastewater Treatment. Jiang M; Ye K; Deng J; Lin J; Ye W; Zhao S; Van der Bruggen B Environ Sci Technol; 2018 Sep; 52(18):10698-10708. PubMed ID: 30118599 [TBL] [Abstract][Full Text] [Related]
4. Microplastics and dye removal from textile wastewater using MIL-53 (Fe) metal-organic framework-based ultrafiltration membranes. Farahbakhsh J; Najafi M; Golgoli M; Asif AH; Khiadani M; Razmjou A; Zargar M Chemosphere; 2024 Sep; 364():143170. PubMed ID: 39181464 [TBL] [Abstract][Full Text] [Related]
5. Smart ultrafiltration membrane fouling control as desalination pretreatment of shale gas fracturing wastewater: The effects of backwash water. Chang H; Li T; Liu B; Chen C; He Q; Crittenden JC Environ Int; 2019 Sep; 130():104869. PubMed ID: 31228783 [TBL] [Abstract][Full Text] [Related]
6. Mitigating the hydraulic compression of nanofiltration hollow fiber membranes through a single-step direct spinning technique. Ong YK; Chung TS Environ Sci Technol; 2014 Dec; 48(23):13933-40. PubMed ID: 25382631 [TBL] [Abstract][Full Text] [Related]
7. Reuse of textile wastewater for dyeing cotton knitted fabric with hybrid treatment: Coagulation/sand filtration/UF/NF-RO. Ćurić I; Dolar D; Bošnjak J J Environ Manage; 2021 Oct; 295():113133. PubMed ID: 34182340 [TBL] [Abstract][Full Text] [Related]
8. Combination of forward osmosis (FO) process with coagulation/flocculation (CF) for potential treatment of textile wastewater. Han G; Liang CZ; Chung TS; Weber M; Staudt C; Maletzko C Water Res; 2016 Mar; 91():361-70. PubMed ID: 26820358 [TBL] [Abstract][Full Text] [Related]
9. Comparative evaluation of ultrafiltration and dynamic membranes in an aerobic membrane bioreactor for municipal wastewater treatment. Isik O; Abdelrahman AM; Ozgun H; Ersahin ME; Demir I; Koyuncu I Environ Sci Pollut Res Int; 2019 Nov; 26(32):32723-32733. PubMed ID: 30847818 [TBL] [Abstract][Full Text] [Related]
10. Ultrafiltration and Nanofiltration for the Removal of Pharmaceutically Active Compounds from Water: The Effect of Operating Pressure on Electrostatic Solute-Membrane Interactions. Giacobbo A; Pasqualotto IF; Machado Filho RCC; Minhalma M; Bernardes AM; Pinho MN Membranes (Basel); 2023 Aug; 13(8):. PubMed ID: 37623804 [TBL] [Abstract][Full Text] [Related]
11. Hybrid MF and membrane bioreactor process applied towards water and indigo reuse from denim textile wastewater. Couto CF; Marques LS; Balmant J; de Oliveira Maia AP; Moravia WG; Santos Amaral MC Environ Technol; 2018 Mar; 39(6):725-738. PubMed ID: 28338418 [TBL] [Abstract][Full Text] [Related]
12. Removal of model dyes on charged UF membranes: Experiment and simulation. Ding J; Pu L; Zou D; Cao M; Shan C; Zhang Q; Gao G; Pan B Chemosphere; 2020 Feb; 240():124940. PubMed ID: 31574446 [TBL] [Abstract][Full Text] [Related]
13. Technical feasibility study of a low-cost hybrid PAC-UF system for wastewater reclamation and reuse: a focus on feedwater production for low-pressure boilers. Amosa MK; Jami MS; Alkhatib MF; Majozi T Environ Sci Pollut Res Int; 2016 Nov; 23(22):22554-22567. PubMed ID: 27557958 [TBL] [Abstract][Full Text] [Related]
14. Textile wastewater treatment using a UF hollow-fibre submerged membrane bioreactor (SMBR). Niren P; Jigisha P Environ Technol; 2011; 32(11-12):1247-57. PubMed ID: 21970167 [TBL] [Abstract][Full Text] [Related]
15. Ultrafiltration of wastewater: effects of particles, mode of operation, and backwash effectiveness. Bourgeous KN; Darby JL; Tchobanoglous G Water Res; 2001 Jan; 35(1):77-90. PubMed ID: 11257896 [TBL] [Abstract][Full Text] [Related]
16. How Fiber Breakage Reduces Microorganism Removal in Ultrafiltration for Wastewater Reclamation. Lee S; Yamashita N; Tanaka H Food Environ Virol; 2019 Jun; 11(2):167-177. PubMed ID: 30756312 [TBL] [Abstract][Full Text] [Related]
17. The feasibility of nanofiltration membrane bioreactor (NF-MBR)+reverse osmosis (RO) process for water reclamation: Comparison with ultrafiltration membrane bioreactor (UF-MBR)+RO process. Tay MF; Liu C; Cornelissen ER; Wu B; Chong TH Water Res; 2018 Feb; 129():180-189. PubMed ID: 29149673 [TBL] [Abstract][Full Text] [Related]
18. Use of cellulose acetate/polyphenylsulfone derivatives to fabricate ultrafiltration hollow fiber membranes for the removal of arsenic from drinking water. Kumar M; RaoT S; Isloor AM; Ibrahim GPS; Inamuddin ; Ismail N; Ismail AF; Asiri AM Int J Biol Macromol; 2019 May; 129():715-727. PubMed ID: 30738161 [TBL] [Abstract][Full Text] [Related]
19. Design and optimization of a hybrid process based on hollow-fiber membrane/coagulation for wastewater treatment. Alibeigi-Beni S; Habibi Zare M; Pourafshari Chenar M; Sadeghi M; Shirazian S Environ Sci Pollut Res Int; 2021 Feb; 28(7):8235-8245. PubMed ID: 33052567 [TBL] [Abstract][Full Text] [Related]
20. Studies on the effect of humic acids and phenol on adsorption-ultrafiltration process performance. Mozia S; Tomaszewska M; Morawski AW Water Res; 2005; 39(2-3):501-9. PubMed ID: 15644259 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]