These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 29182333)

  • 1. Reply to "Comment on '308 nm Photolysis of Nitric Acid in the Gas Phase, on Aluminum Surfaces, and on Ice Films'".
    Zhu C; Xiang B; Chu LT; Zhu L
    J Phys Chem A; 2012 Oct; 116(42):10465-10466. PubMed ID: 29182333
    [No Abstract]   [Full Text] [Related]  

  • 2. 308 nm photolysis of nitric acid in the gas phase, on aluminum surfaces, and on ice films.
    Zhu C; Xiang B; Chu LT; Zhu L
    J Phys Chem A; 2010 Feb; 114(7):2561-8. PubMed ID: 20121260
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comment on "308 nm photolysis of nitric acid in the gas phase, on aluminum surfaces, and on ice films".
    Tadić JM
    J Phys Chem A; 2012 Oct; 116(42):10463-4; discussion 10465-6. PubMed ID: 23016500
    [No Abstract]   [Full Text] [Related]  

  • 4. Reply to "Comment on 'Photolysis of Polycyclic Aromatic Hydrocarbons on Water and Ice Surfaces' and on 'Nonchromophoric Organic Matter Suppresses Polycyclic Aromatic Hydrocarbon Photolysis in Ice and at Ice Surfaces'".
    Donaldson DJ; Kahan TF
    J Phys Chem A; 2015 Oct; 119(43):10764-5. PubMed ID: 26451632
    [No Abstract]   [Full Text] [Related]  

  • 5. Morphology of nitric acid and water ice films.
    Keyser LF; Leu MT
    Microsc Res Tech; 1993 Aug; 25(5-6):434-8. PubMed ID: 8400437
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Burial of gas-phase HNO(3) by growing ice surfaces under tropospheric conditions.
    Ullerstam M; Abbatt JP
    Phys Chem Chem Phys; 2005 Oct; 7(20):3596-600. PubMed ID: 16294236
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comment on "Photolysis of Polycyclic Aromatic Hydrocarbons on Water and Ice Surfaces" and on "Nonchromophoric Organic Matter Suppresses Polycyclic Aromatic Hydrocarbon Photolysis in Ice and at Ice Surfaces".
    Krausko J; Ondrušková G; Heger D
    J Phys Chem A; 2015 Oct; 119(43):10761-3. PubMed ID: 26456165
    [No Abstract]   [Full Text] [Related]  

  • 8. Adsorption study of acetone on acid-doped ice surfaces between 203 and 233 K.
    Journet E; Le Calvé S; Mirabel P
    J Phys Chem B; 2005 Jul; 109(29):14112-7. PubMed ID: 16852772
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reply to "Comment on 'Semimetal-to-semiconductor transition in bismuth thin films' ".
    Hoffman CA; Meyer JR; Bartoli FJ; Di Venere A ; Yi XJ; Hou CL; Wang HC; Ketterson JB; Wong GK
    Phys Rev B Condens Matter; 1995 Feb; 51(8):5535-5537. PubMed ID: 9979452
    [No Abstract]   [Full Text] [Related]  

  • 10. Nonchromophoric organic matter suppresses polycyclic aromatic hydrocarbon photolysis in ice and at ice surfaces.
    Malley PP; Kahan TF
    J Phys Chem A; 2014 Mar; 118(9):1638-43. PubMed ID: 24527955
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photolysis of nitric acid at 308 nm in the absence and in the presence of water vapor.
    Zhu L; Sangwan M; Huang L; Du J; Chu LT
    J Phys Chem A; 2015 May; 119(20):4907-14. PubMed ID: 25907523
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Uptake of formic acid on thin ice films and on ice doped with nitric acid between 195 and 211 K.
    Romanias MN; Zogka AG; Stefanopoulos VG; Papadimitriou VC; Papagiannakopoulos P
    Chemphyschem; 2010 Dec; 11(18):4042-52. PubMed ID: 20960493
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Uptake measurements of acetic acid on ice and nitric acid-doped thin ice films over upper troposphere/lower stratosphere temperatures.
    Romanias MN; Zogka AG; Papadimitriou VC; Papagiannakopoulos P
    J Phys Chem A; 2012 Mar; 116(9):2198-208. PubMed ID: 22313232
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Benzene photolysis on ice: implications for the fate of organic contaminants in the winter.
    Kahan TF; Donaldson DJ
    Environ Sci Technol; 2010 May; 44(10):3819-24. PubMed ID: 20423076
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conversion of methane into C1 oxygenates by deep-UV photolysis on solid surfaces: influence of the nature of the solid and optimization of photolysis conditions.
    Sastre F; Fornés V; Corma A; García H
    Chemistry; 2012 Feb; 18(6):1820-5. PubMed ID: 22223585
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ice photolysis of 2,2',4,4',6-pentabromodiphenyl ether (BDE-100): laboratory investigations using solid phase microextraction.
    Sanchez-Prado L; Kalafata K; Risticevic S; Pawliszyn J; Lores M; Llompart M; Kalogerakis N; Psillakis E
    Anal Chim Acta; 2012 Sep; 742():90-6. PubMed ID: 22884212
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photolysis of polycyclic aromatic hydrocarbons on water and ice surfaces.
    Kahan TF; Donaldson DJ
    J Phys Chem A; 2007 Feb; 111(7):1277-85. PubMed ID: 17256828
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antarctic Ozone Depletion Chemistry: Reactions of N2O5 with H2O and HCl on Ice Surfaces.
    Tolbert MA; Rossi MJ; Golden DM
    Science; 1988 May; 240(4855):1018-21. PubMed ID: 17731714
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photochemistry of adsorbed nitrate on aluminum oxide particle surfaces.
    Rubasinghege G; Grassian VH
    J Phys Chem A; 2009 Jul; 113(27):7818-25. PubMed ID: 19534452
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface-enhanced nitrate photolysis on ice.
    Marcotte G; Marchand P; Pronovost S; Ayotte P; Laffon C; Parent P
    J Phys Chem A; 2015 Mar; 119(10):1996-2005. PubMed ID: 25671500
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.