BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 29182610)

  • 1. BDNF expression in cat striate cortex is regulated by binocular pattern deprivation.
    Laskowska-Macios K; Arckens L; Kossut M; Burnat K
    Acta Neurobiol Exp (Wars); 2017; 77(3):199-204. PubMed ID: 29182610
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Zif268 mRNA Expression Patterns Reveal a Distinct Impact of Early Pattern Vision Deprivation on the Development of Primary Visual Cortical Areas in the Cat.
    Laskowska-Macios K; Zapasnik M; Hu TT; Kossut M; Arckens L; Burnat K
    Cereb Cortex; 2015 Oct; 25(10):3515-26. PubMed ID: 25205660
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Binocular pattern deprivation with delayed onset has impact on motion perception in adulthood.
    Zapasnik M; Burnat K
    Neuroscience; 2013; 255():99-109. PubMed ID: 24120559
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Binocular pattern deprivation interferes with the expression of proteins involved in primary visual cortex maturation in the cat.
    Laskowska-Macios K; Nys J; Hu TT; Zapasnik M; Van der Perren A; Kossut M; Burnat K; Arckens L
    Mol Brain; 2015 Aug; 8():48. PubMed ID: 26271461
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experience-dependent regulation of TrkB isoforms in rodent visual cortex.
    Bracken BK; Turrigiano GG
    Dev Neurobiol; 2009 Apr; 69(5):267-78. PubMed ID: 19224567
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential effects of neurotrophins on ocular dominance plasticity in developing and adult cat visual cortex.
    Galuske RA; Kim DS; Castrén E; Singer W
    Eur J Neurosci; 2000 Sep; 12(9):3315-30. PubMed ID: 10998115
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid regulation of brain-derived neurotrophic factor mRNA within eye-specific circuits during ocular dominance column formation.
    Lein ES; Shatz CJ
    J Neurosci; 2000 Feb; 20(4):1470-83. PubMed ID: 10662837
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mismatch between BDNF mRNA and protein expression in the developing visual cortex: the role of visual experience.
    Tropea D; Capsoni S; Tongiorgi E; Giannotta S; Cattaneo A; Domenici L
    Eur J Neurosci; 2001 Feb; 13(4):709-21. PubMed ID: 11207806
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Visual cortex is rescued from the effects of dark rearing by overexpression of BDNF.
    Gianfranceschi L; Siciliano R; Walls J; Morales B; Kirkwood A; Huang ZJ; Tonegawa S; Maffei L
    Proc Natl Acad Sci U S A; 2003 Oct; 100(21):12486-91. PubMed ID: 14514885
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of partial sensory deprivation on monoaminergic neuromodulators in striate cortex of adult cat.
    Qu Y; Eysel UT; Vandesande F; Arckens L
    Neuroscience; 2000; 101(4):863-8. PubMed ID: 11113334
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dark rearing blocks the developmental down-regulation of brain-derived neurotrophic factor messenger RNA expression in layers IV and V of the rat visual cortex.
    Capsoni S; Tongiorgi E; Cattaneo A; Domenici L
    Neuroscience; 1999 Jan; 88(2):393-403. PubMed ID: 10197762
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experience-dependent plasticity of mouse visual cortex in the absence of the neuronal activity-dependent marker egr1/zif268.
    Mataga N; Fujishima S; Condie BG; Hensch TK
    J Neurosci; 2001 Dec; 21(24):9724-32. PubMed ID: 11739581
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of a 14-day period of hindpaw sensory restriction on mRNA and protein levels of NGF and BDNF in the hindpaw primary somatosensory cortex.
    Dupont E; Canu MH; Stevens L; Falempin M
    Brain Res Mol Brain Res; 2005 Jan; 133(1):78-86. PubMed ID: 15661367
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dendritic BDNF synthesis is required for late-phase spine maturation and recovery of cortical responses following sensory deprivation.
    Kaneko M; Xie Y; An JJ; Stryker MP; Xu B
    J Neurosci; 2012 Apr; 32(14):4790-802. PubMed ID: 22492034
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experience-dependent central vision deficits: Neurobiology and visual acuity.
    Williams K; Balsor JL; Beshara S; Beston BR; Jones DG; Murphy KM
    Vision Res; 2015 Sep; 114():68-78. PubMed ID: 25668772
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Response properties of striate cortex neurons in cats raised with divergent or convergent strabismus.
    Kalil RE; Spear PD; Langsetmo A
    J Neurophysiol; 1984 Sep; 52(3):514-37. PubMed ID: 6481442
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of neuronal activity and activity-dependent expression of brain-derived neurotrophic factor mRNA in organotypic cultures of rat visual cortex.
    Gorba T; Klostermann O; Wahle P
    Cereb Cortex; 1999 Dec; 9(8):864-77. PubMed ID: 10601005
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Time-dependent changes in the expression of the MEF2 transcription factor family during topographic map reorganization in mammalian visual cortex.
    Leysen I; Van der Gucht E; Eysel UT; Huybrechts R; Vandesande F; Arckens L
    Eur J Neurosci; 2004 Aug; 20(3):769-80. PubMed ID: 15255987
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regional Specificity of GABAergic Regulation of Cross-Modal Plasticity in Mouse Visual Cortex after Unilateral Enucleation.
    Nys J; Smolders K; Laramée ME; Hofman I; Hu TT; Arckens L
    J Neurosci; 2015 Aug; 35(32):11174-89. PubMed ID: 26269628
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential regulation of brain-derived neurotrophic factor messenger RNA cellular expression in the adult rat visual cortex.
    Capsoni S; Tongiorgi E; Cattaneo A; Domenici L
    Neuroscience; 1999; 93(3):1033-40. PubMed ID: 10473268
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.