These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
203 related articles for article (PubMed ID: 29182646)
1. Transcriptome-wide analysis of the Trypanosoma cruzi proliferative cycle identifies the periodically expressed mRNAs and their multiple levels of control. Chávez S; Eastman G; Smircich P; Becco LL; Oliveira-Rizzo C; Fort R; Potenza M; Garat B; Sotelo-Silveira JR; Duhagon MA PLoS One; 2017; 12(11):e0188441. PubMed ID: 29182646 [TBL] [Abstract][Full Text] [Related]
2. Extensive Translational Regulation through the Proliferative Transition of Trypanosoma cruzi Revealed by Multi-Omics. Chávez S; Urbaniak MD; Benz C; Smircich P; Garat B; Sotelo-Silveira JR; Duhagon MA mSphere; 2021 Oct; 6(5):e0036621. PubMed ID: 34468164 [TBL] [Abstract][Full Text] [Related]
3. Control mechanisms of tubulin gene expression in Trypanosoma cruzi. da Silva RA; Bartholomeu DC; Teixeira SM Int J Parasitol; 2006 Jan; 36(1):87-96. PubMed ID: 16233898 [TBL] [Abstract][Full Text] [Related]
4. The Trypanosoma cruzi RNA-binding protein RBP42 is expressed in the cytoplasm throughout the life cycle of the parasite. Tyler Weisbarth R; Das A; Castellano P; Fisher MA; Wu H; Bellofatto V Parasitol Res; 2018 Apr; 117(4):1095-1104. PubMed ID: 29473141 [TBL] [Abstract][Full Text] [Related]
5. Involvement of an RNA binding protein containing Alba domain in the stage-specific regulation of beta-amastin expression in Trypanosoma cruzi. Pérez-Díaz L; Silva TC; Teixeira SM Mol Biochem Parasitol; 2017 Jan; 211():1-8. PubMed ID: 27986451 [TBL] [Abstract][Full Text] [Related]
6. Trypanosoma cruzi specific mRNA amplification by in vitro transcription improves parasite transcriptomics in host-parasite RNA mixtures. Kessler RL; Pavoni DP; Krieger MA; Probst CM BMC Genomics; 2017 Oct; 18(1):793. PubMed ID: 29037144 [TBL] [Abstract][Full Text] [Related]
7. Cell cycle expression of histone genes in Trypanosoma cruzi. Recinos RF; Kirchhoff LV; Donelson JE Mol Biochem Parasitol; 2001 Apr; 113(2):215-22. PubMed ID: 11295175 [TBL] [Abstract][Full Text] [Related]
8. Functional genomic characterization of mRNAs associated with TcPUF6, a pumilio-like protein from Trypanosoma cruzi. Dallagiovanna B; Correa A; Probst CM; Holetz F; Smircich P; de Aguiar AM; Mansur F; da Silva CV; Mortara RA; Garat B; Buck GA; Goldenberg S; Krieger MA J Biol Chem; 2008 Mar; 283(13):8266-73. PubMed ID: 18056709 [TBL] [Abstract][Full Text] [Related]
9. Conserved motifs in nuclear genes encoding predicted mitochondrial proteins in Trypanosoma cruzi. Becco L; Smircich P; Garat B PLoS One; 2019; 14(4):e0215160. PubMed ID: 30964924 [TBL] [Abstract][Full Text] [Related]
10. Transcriptome Remodeling in Trypanosoma cruzi and Human Cells during Intracellular Infection. Li Y; Shah-Simpson S; Okrah K; Belew AT; Choi J; Caradonna KL; Padmanabhan P; Ndegwa DM; Temanni MR; Corrada Bravo H; El-Sayed NM; Burleigh BA PLoS Pathog; 2016 Apr; 12(4):e1005511. PubMed ID: 27046031 [TBL] [Abstract][Full Text] [Related]
12. Distinct genomic organization, mRNA expression and cellular localization of members of two amastin sub-families present in Trypanosoma cruzi. Kangussu-Marcolino MM; de Paiva RM; Araújo PR; de Mendonça-Neto RP; Lemos L; Bartholomeu DC; Mortara RA; daRocha WD; Teixeira SM BMC Microbiol; 2013 Jan; 13():10. PubMed ID: 23327097 [TBL] [Abstract][Full Text] [Related]
13. Differences in inferred genome-wide signals of positive selection during the evolution of Trypanosoma cruzi and Leishmania spp. lineages: A result of disparities in host and tissue infection ranges? Flores-López CA; Machado CA Infect Genet Evol; 2015 Jul; 33():37-46. PubMed ID: 25891283 [TBL] [Abstract][Full Text] [Related]
14. TcZC3HTTP, a regulatory element that contributes to Romagnoli BAA; Lucena ACR; Freire ER; Munhoz da Rocha IF; Alves LR; Goldenberg S Microbiol Spectr; 2024 Mar; 12(3):e0288023. PubMed ID: 38270449 [TBL] [Abstract][Full Text] [Related]
15. Quantitative proteomics and phosphoproteomics of Trypanosoma cruzi epimastigote cell cycle. Santos Júnior ACMD; Melo RM; Ferreira BVG; Pontes AH; Lima CMR; Fontes W; Sousa MV; Lima BD; Ricart CAO Biochim Biophys Acta Proteins Proteom; 2021 May; 1869(5):140619. PubMed ID: 33561577 [TBL] [Abstract][Full Text] [Related]
16. Implication of CA repeated tracts on post-transcriptional regulation in Trypanosoma cruzi. Pastro L; Smircich P; Pérez-Díaz L; Duhagon MA; Garat B Exp Parasitol; 2013 Aug; 134(4):511-8. PubMed ID: 23631879 [TBL] [Abstract][Full Text] [Related]
17. Regulatory elements involved in the post-transcriptional control of stage-specific gene expression in Trypanosoma cruzi: a review. Araújo PR; Teixeira SM Mem Inst Oswaldo Cruz; 2011 May; 106(3):257-66. PubMed ID: 21655811 [TBL] [Abstract][Full Text] [Related]
18. Evidence for a negative feedback control mediated by the 3' untranslated region assuring the low expression level of the RNA binding protein TcRBP19 in T. cruzi epimastigotes. Pérez-Díaz L; Pastro L; Smircich P; Dallagiovanna B; Garat B Biochem Biophys Res Commun; 2013 Jun; 436(2):295-9. PubMed ID: 23743203 [TBL] [Abstract][Full Text] [Related]
19. The steady-state transcriptome of the four major life-cycle stages of Trypanosoma cruzi. Minning TA; Weatherly DB; Atwood J; Orlando R; Tarleton RL BMC Genomics; 2009 Aug; 10():370. PubMed ID: 19664227 [TBL] [Abstract][Full Text] [Related]
20. Characterization of TcCYC6 from Trypanosoma cruzi, a gene with homology to mitotic cyclins. Di Renzo MA; Laverrière M; Schenkman S; Wehrendt DP; Tellez-Iñón MT; Potenza M Parasitol Int; 2016 Jun; 65(3):196-204. PubMed ID: 26709077 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]