These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 29182848)

  • 1. Self-Recovery Superhydrophobic Surfaces: Modular Design.
    Lisi E; Amabili M; Meloni S; Giacomello A; Casciola CM
    ACS Nano; 2018 Jan; 12(1):359-367. PubMed ID: 29182848
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wetting and cavitation pathways on nanodecorated surfaces.
    Amabili M; Lisi E; Giacomello A; Casciola CM
    Soft Matter; 2016 Mar; 12(12):3046-55. PubMed ID: 26905783
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spontaneous recovery of superhydrophobicity on nanotextured surfaces.
    Prakash S; Xi E; Patel AJ
    Proc Natl Acad Sci U S A; 2016 May; 113(20):5508-13. PubMed ID: 27140619
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wetting and recovery of nano-patterned surfaces beyond the classical picture.
    Marchio S; Meloni S; Giacomello A; Casciola CM
    Nanoscale; 2019 Nov; 11(44):21458-21470. PubMed ID: 31686077
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Macroscopic superhydrophobicity achieved by atomic decoration with silicones.
    Huang Y; Meng S
    J Chem Phys; 2018 Jul; 149(1):014706. PubMed ID: 29981555
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recovering superhydrophobicity in nanoscale and macroscale surface textures.
    Giacomello A; Schimmele L; Dietrich S; Tasinkevych M
    Soft Matter; 2019 Sep; 15(37):7462-7471. PubMed ID: 31512709
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intrusion and extrusion of a liquid on nanostructured surfaces.
    Amabili M; Giacomello A; Meloni S; Casciola CM
    J Phys Condens Matter; 2017 Jan; 29(1):014003. PubMed ID: 27830654
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimal design of superhydrophobic surfaces using a paraboloid microtexture.
    Tie L; Guo Z; Li W
    J Colloid Interface Sci; 2014 Dec; 436():19-28. PubMed ID: 25265581
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Superhydrophobicity on two-tier rough surfaces fabricated by controlled growth of aligned carbon nanotube arrays coated with fluorocarbon.
    Zhu L; Xiu Y; Xu J; Tamirisa PA; Hess DW; Wong CP
    Langmuir; 2005 Nov; 21(24):11208-12. PubMed ID: 16285792
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanostructures increase water droplet adhesion on hierarchically rough superhydrophobic surfaces.
    Teisala H; Tuominen M; Aromaa M; Stepien M; Mäkelä JM; Saarinen JJ; Toivakka M; Kuusipalo J
    Langmuir; 2012 Feb; 28(6):3138-45. PubMed ID: 22263866
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Performance Investigation on Different Designs of Superhydrophobic Surface Texture for Composite Insulator.
    Zhao M; Li W; Wu Y; Zhao X; Tan M; Xing J
    Materials (Basel); 2019 Apr; 12(7):. PubMed ID: 30974779
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Liquid-Pressure-Guided Superhydrophobic Surfaces with Adaptive Adhesion and Stability.
    Tan Y; Yang J; Li Y; Li X; Wu Q; Fan Y; Yu F; Cui J; Chen L; Wang D; Deng X
    Adv Mater; 2022 Jul; 34(30):e2202167. PubMed ID: 35611542
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioinspired super-antiwetting interfaces with special liquid-solid adhesion.
    Liu M; Zheng Y; Zhai J; Jiang L
    Acc Chem Res; 2010 Mar; 43(3):368-77. PubMed ID: 19954162
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wetting on fractal superhydrophobic surfaces from "core-shell" particles: a comparison of theory and experiment.
    Synytska A; Ionov L; Grundke K; Stamm M
    Langmuir; 2009 Mar; 25(5):3132-6. PubMed ID: 19437778
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dewetting Transitions of Dropwise Condensation on Nanotexture-Enhanced Superhydrophobic Surfaces.
    Lv C; Hao P; Zhang X; He F
    ACS Nano; 2015 Dec; 9(12):12311-9. PubMed ID: 26565420
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wettability of natural superhydrophobic surfaces.
    Webb HK; Crawford RJ; Ivanova EP
    Adv Colloid Interface Sci; 2014 Aug; 210():58-64. PubMed ID: 24556235
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gas cushion model and hydrodynamic boundary conditions for superhydrophobic textures.
    Nizkaya TV; Asmolov ES; Vinogradova OI
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Oct; 90(4):043017. PubMed ID: 25375603
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Imaging the air-water interface: Characterising biomimetic and natural hydrophobic surfaces using in situ atomic force microscopy.
    Elbourne A; Dupont MF; Collett S; Truong VK; Xu X; Vrancken N; Baulin V; Ivanova EP; Crawford RJ
    J Colloid Interface Sci; 2019 Feb; 536():363-371. PubMed ID: 30380435
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Drop Impact on Two-Tier Monostable Superrepellent Surfaces.
    Shi S; Lv C; Zheng Q
    ACS Appl Mater Interfaces; 2019 Nov; 11(46):43698-43707. PubMed ID: 31644872
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.