BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 29182874)

  • 1. Revisiting Nitrogen Species in Covalent Triazine Frameworks.
    Osadchii DY; Olivos-Suarez AI; Bavykina AV; Gascon J
    Langmuir; 2017 Dec; 33(50):14278-14285. PubMed ID: 29182874
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Newly Designed Covalent Triazine Framework Based on Novel N-Heteroaromatic Building Blocks for Efficient CO
    Wang G; Leus K; Zhao S; Van Der Voort P
    ACS Appl Mater Interfaces; 2018 Jan; 10(1):1244-1249. PubMed ID: 29235840
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthetic Control and Multifunctional Properties of Fluorescent Covalent Triazine-Based Frameworks.
    Wang X; Zhang C; Zhao Y; Ren S; Jiang JX
    Macromol Rapid Commun; 2016 Feb; 37(4):323-9. PubMed ID: 26697782
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of Building Block Transformation in Covalent Triazine-Based Frameworks for Enhanced CO
    Jena HS; Krishnaraj C; Schmidt J; Leus K; Van Hecke K; Van Der Voort P
    Chemistry; 2020 Feb; 26(7):1548-1557. PubMed ID: 31603596
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Palladium as a Superior Cocatalyst to Platinum for Hydrogen Evolution Using Covalent Triazine Frameworks as a Support.
    Liu M; Wang X; Liu J; Wang K; Jin S; Tan B
    ACS Appl Mater Interfaces; 2020 Mar; 12(11):12774-12782. PubMed ID: 32077274
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In Situ Generation of Electrolyte inside Pyridine-Based Covalent Triazine Frameworks for Direct Supercapacitor Integration.
    Troschke E; Leistenschneider D; Rensch T; Grätz S; Maschita J; Ehrling S; Klemmed B; Lotsch BV; Eychmüller A; Borchardt L; Kaskel S
    ChemSusChem; 2020 Jun; 13(12):3192-3198. PubMed ID: 32243702
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent Advancements in the Synthesis of Covalent Triazine Frameworks for Energy and Environmental Applications.
    Zhang Y; Jin S
    Polymers (Basel); 2018 Dec; 11(1):. PubMed ID: 30960015
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Porous Functionalized Covalent-Triazine Frameworks for Enhanced Adsorption Toward Polysulfides in Li-S Batteries and Organic Dyes.
    Liu Q; Yang S; Repich H; Zhai Y; Xu X; Liang Y; Li H; Wang H; Xu F
    Front Chem; 2020; 8():584204. PubMed ID: 33344414
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Covalent Triazine Frameworks Based on the First
    Wessely ID; Schade AM; Dey S; Bhunia A; Nuhnen A; Janiak C; Bräse S
    Materials (Basel); 2021 Jun; 14(12):. PubMed ID: 34200941
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carbon- and Nitrogen-Based Organic Frameworks.
    Sakaushi K; Antonietti M
    Acc Chem Res; 2015 Jun; 48(6):1591-600. PubMed ID: 26000989
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Covalent Triazine Frameworks via a Low-Temperature Polycondensation Approach.
    Wang K; Yang LM; Wang X; Guo L; Cheng G; Zhang C; Jin S; Tan B; Cooper A
    Angew Chem Int Ed Engl; 2017 Nov; 56(45):14149-14153. PubMed ID: 28926688
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemically Activated Covalent Triazine Frameworks with Enhanced Textural Properties for High Capacity Gas Storage.
    Lee YJ; Talapaneni SN; Coskun A
    ACS Appl Mater Interfaces; 2017 Sep; 9(36):30679-30685. PubMed ID: 28782930
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rational design of covalent triazine frameworks based on pore size and heteroatomic toward high performance supercapacitors.
    Zhang Y; Zhang B; Chen L; Wang T; Di M; Jiang F; Xu X; Qiao S
    J Colloid Interface Sci; 2022 Jan; 606(Pt 2):1534-1542. PubMed ID: 34500156
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Covalent Triazine Frameworks and Porous Carbons: Perspective from an Azulene-Based Case.
    Jiang K; Peng P; Tranca D; Tong G; Ke C; Lu C; Hu J; Liang H; Li J; Zhou S; Kymakis E; Zhuang X
    Macromol Rapid Commun; 2022 Oct; 43(20):e2200392. PubMed ID: 35678742
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ionothermal Synthesis of Covalent Triazine Frameworks in a NaCl-KCl-ZnCl
    Lan ZA; Wu M; Fang Z; Zhang Y; Chen X; Zhang G; Wang X
    Angew Chem Int Ed Engl; 2022 Apr; 61(18):e202201482. PubMed ID: 35218273
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrastable Covalent Triazine Organic Framework Based on Anthracene Moiety as Platform for High-Performance Carbon Dioxide Adsorption and Supercapacitors.
    Mohamed MG; Sharma SU; Liu NY; Mansoure TH; Samy MM; Chaganti SV; Chang YL; Lee JT; Kuo SW
    Int J Mol Sci; 2022 Mar; 23(6):. PubMed ID: 35328595
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Advances in the Synthesis of Covalent Triazine Frameworks.
    Liao L; Li M; Yin Y; Chen J; Zhong Q; Du R; Liu S; He Y; Fu W; Zeng F
    ACS Omega; 2023 Feb; 8(5):4527-4542. PubMed ID: 36777586
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tunable Covalent Triazine-Based Frameworks (CTF-0) for Visible-Light-Driven Hydrogen and Oxygen Generation from Water Splitting.
    Kong D; Han X; Xie J; Ruan Q; Windle CD; Gadipelli S; Shen K; Bai Z; Guo Z; Tang J
    ACS Catal; 2019 Sep; 9(9):7697-7707. PubMed ID: 32064148
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Porous Cationic Covalent Triazine-Based Frameworks as Platforms for Efficient CO
    Xu G; Zhu Y; Xie W; Zhang S; Yao C; Xu Y
    Chem Asian J; 2019 Oct; 14(19):3259-3263. PubMed ID: 31441220
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly Perfluorinated Covalent Triazine Frameworks Derived from a Low-Temperature Ionothermal Approach Towards Enhanced CO
    Suo X; Zhang F; Yang Z; Chen H; Wang T; Wang Z; Kobayashi T; Do-Thanh CL; Maltsev D; Liu Z; Dai S
    Angew Chem Int Ed Engl; 2021 Dec; 60(49):25688-25694. PubMed ID: 34582075
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.