BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 29182919)

  • 1. An atomic force microscopy mode for nondestructive electromechanical studies and its application to diphenylalanine peptide nanotubes.
    Kalinin A; Atepalikhin V; Pakhomov O; Kholkin AL; Tselev A
    Ultramicroscopy; 2018 Feb; 185():49-54. PubMed ID: 29182919
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using the bending beam model to estimate the elasticity of diphenylalanine nanotubes.
    Niu L; Chen X; Allen S; Tendler SJ
    Langmuir; 2007 Jul; 23(14):7443-6. PubMed ID: 17550276
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of the Chloride Anions on the Formation of Self-Assembled Diphenylalanine Peptide Nanotubes.
    Dayarian S; Kopyl S; Bystrov V; Correia MR; Ivanov MS; Pelegova E; Kholkin A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Sep; 65(9):1563-1570. PubMed ID: 29994474
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrostatic force microscopy of self-assembled peptide structures.
    Clausen CH; Dimaki M; Panagos SP; Kasotakis E; Mitraki A; Svendsen WE; Castillo-León J
    Scanning; 2011; 33(4):201-7. PubMed ID: 21506135
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nondestructive Raman and atomic force microscopy measurement of molecular structure for individual diphenylalanine nanotubes.
    Lekprasert B; Sedman V; Roberts CJ; Tedler SJ; Notingher I
    Opt Lett; 2010 Dec; 35(24):4193-5. PubMed ID: 21165134
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Capillarity induced large area patterning of peptide nanowires.
    Park JS; Han TH; Oh JK; Kim SO
    J Nanosci Nanotechnol; 2010 Oct; 10(10):6954-7. PubMed ID: 21137832
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Manipulation of self-assembly amyloid peptide nanotubes by dielectrophoresis.
    Castillo J; Tanzi S; Dimaki M; Svendsen W
    Electrophoresis; 2008 Dec; 29(24):5026-32. PubMed ID: 19130587
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intermittent contact mode piezoresponse force microscopy in a liquid environment.
    Rodriguez BJ; Jesse S; Habelitz S; Proksch R; Kalinin SV
    Nanotechnology; 2009 May; 20(19):195701. PubMed ID: 19420645
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Elastic modulus of viral nanotubes.
    Zhao Y; Ge Z; Fang J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Sep; 78(3 Pt 1):031914. PubMed ID: 18851072
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Higher-order electromechanical response of thin films by contact resonance piezoresponse force microscopy.
    Harnagea C; Pignolet A; Alexe M; Hesse D
    IEEE Trans Ultrason Ferroelectr Freq Control; 2006 Dec; 53(12):2309-22. PubMed ID: 17186913
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Force-deflection spectroscopy: a new method to determine the Young's modulus of nanofilaments.
    Xiong Q; Duarte N; Tadigadapa S; Eklund PC
    Nano Lett; 2006 Sep; 6(9):1904-9. PubMed ID: 16967999
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanoscale Piezoelectric Properties of Self-Assembled Fmoc-FF Peptide Fibrous Networks.
    Ryan K; Beirne J; Redmond G; Kilpatrick JI; Guyonnet J; Buchete NV; Kholkin AL; Rodriguez BJ
    ACS Appl Mater Interfaces; 2015 Jun; 7(23):12702-7. PubMed ID: 25994251
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-assembling diphenylalanine peptide nanotubes selectively eradicate bacterial biofilm infection.
    Porter SL; Coulter SM; Pentlavalli S; Thompson TP; Laverty G
    Acta Biomater; 2018 Sep; 77():96-105. PubMed ID: 30031161
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Why are diphenylalanine-based peptide nanostructures so rigid? Insights from first principles calculations.
    Azuri I; Adler-Abramovich L; Gazit E; Hod O; Kronik L
    J Am Chem Soc; 2014 Jan; 136(3):963-9. PubMed ID: 24368025
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Near-field Raman spectroscopy of biological nanomaterials by in situ laser-induced synthesis of tip-enhanced Raman spectroscopy tips.
    Sinjab F; Lekprasert B; Woolley RA; Roberts CJ; Tendler SJ; Notingher I
    Opt Lett; 2012 Jun; 37(12):2256-8. PubMed ID: 22739873
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diphenylalanine peptide nanotubes self-assembled on functionalized metal surfaces for potential application in drug-eluting stent.
    Zohrabi T; Habibi N; Zarrabi A; Fanaei M; Lee LY
    J Biomed Mater Res A; 2016 Sep; 104(9):2280-90. PubMed ID: 27119433
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A decade of piezoresponse force microscopy: progress, challenges, and opportunities.
    Kalinin SV; Rar A; Jesse S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2006 Dec; 53(12):2226-52. PubMed ID: 17186903
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High resolution quantitative piezoresponse force microscopy of BiFeO3 nanofibers with dramatically enhanced sensitivity.
    Xie S; Gannepalli A; Chen QN; Liu Y; Zhou Y; Proksch R; Li J
    Nanoscale; 2012 Jan; 4(2):408-13. PubMed ID: 22101512
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular modeling and computational study of the chiral-dependent structures and properties of self-assembling diphenylalanine peptide nanotubes.
    Bystrov VS; Zelenovskiy PS; Nuraeva AS; Kopyl S; Zhulyabina OA; Tverdislov VA
    J Mol Model; 2019 Jun; 25(7):199. PubMed ID: 31240406
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-assembled light-harvesting peptide nanotubes for mimicking natural photosynthesis.
    Kim JH; Lee M; Lee JS; Park CB
    Angew Chem Int Ed Engl; 2012 Jan; 51(2):517-20. PubMed ID: 21976303
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.