These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
340 related articles for article (PubMed ID: 29182924)
1. Control of anthracnose caused by Colletotrichum species in guava, mango and papaya using synergistic combinations of chitosan and Cymbopogon citratus (D.C. ex Nees) Stapf. essential oil. Lima Oliveira PD; de Oliveira KÁR; Vieira WADS; Câmara MPS; de Souza EL Int J Food Microbiol; 2018 Feb; 266():87-94. PubMed ID: 29182924 [TBL] [Abstract][Full Text] [Related]
2. Synergistic mixtures of chitosan and Mentha piperita L. essential oil to inhibit Colletotrichum species and anthracnose development in mango cultivar Tommy Atkins. de Oliveira KÁR; Berger LRR; de Araújo SA; Câmara MPS; de Souza EL Food Microbiol; 2017 Sep; 66():96-103. PubMed ID: 28576378 [TBL] [Abstract][Full Text] [Related]
3. Combined chitosan and Cympobogon citratus (D.C. ex Nees) Stapf. essential oil to inhibit the fungal phytopathogen Paramyrothecium roridum and control crater rot in melon (Cucumis melo L.). Macedo SA; Lundgren GA; Dos Passos Braga S; de Souza EL; Câmara MPS Braz J Microbiol; 2020 Dec; 51(4):2057-2065. PubMed ID: 32915438 [TBL] [Abstract][Full Text] [Related]
4. Application of coatings formed by chitosan and Mentha essential oils to control anthracnose caused by Colletotrichum gloesporioides and C. brevisporum in papaya (Carica papaya L.) fruit. Dos Passos Braga S; Lundgren GA; Macedo SA; Tavares JF; Dos Santos Vieira WA; Câmara MPS; de Souza EL Int J Biol Macromol; 2019 Oct; 139():631-639. PubMed ID: 31381924 [TBL] [Abstract][Full Text] [Related]
5. Application of Potentially Probiotic Fruit-Derived Lactic Acid Bacteria Loaded into Sodium Alginate Coatings to Control Anthracnose Development in Guava and Mango During Storage. Fernandes KFD; de Oliveira KÁR; de Souza EL Probiotics Antimicrob Proteins; 2023 Jun; 15(3):573-587. PubMed ID: 34755278 [TBL] [Abstract][Full Text] [Related]
6. Colletotrichum gloesporioides inhibition using chitosan-Ruta graveolens L essential oil coatings: Studies in vitro and in situ on Carica papaya fruit. Peralta-Ruiz Y; Grande Tovar C; Sinning-Mangonez A; Bermont D; Pérez Cordero A; Paparella A; Chaves-López C Int J Food Microbiol; 2020 Aug; 326():108649. PubMed ID: 32402917 [TBL] [Abstract][Full Text] [Related]
7. Application of lemongrass oil in vapour phase for the effective control of anthracnose of 'Sekaki' papaya. Ali A; Wee Pheng T; Mustafa MA J Appl Microbiol; 2015 Jun; 118(6):1456-64. PubMed ID: 25727701 [TBL] [Abstract][Full Text] [Related]
8. Potential of chitosan-loaded nanoemulsions to control different Colletotrichum spp. and maintain quality of tropical fruits during cold storage. Zahid N; Ali A; Manickam S; Siddiqui Y; Maqbool M J Appl Microbiol; 2012 Oct; 113(4):925-39. PubMed ID: 22805053 [TBL] [Abstract][Full Text] [Related]
9. Antifungal activity of 1-methylcyclopropene (1-MCP) against anthracnose (Colletotrichum gloeosporioides) in postharvest mango fruit and its possible mechanisms of action. Xu X; Lei H; Ma X; Lai T; Song H; Shi X; Li J Int J Food Microbiol; 2017 Jan; 241():1-6. PubMed ID: 27728853 [TBL] [Abstract][Full Text] [Related]
10. Coatings with chitosan and phenolic-rich extract from acerola (Malpighia emarginata D.C.) or jabuticaba (Plinia jaboticaba (Vell.) Berg) processing by-product to control rot caused by Lasiodiplodia spp. in papaya (Carica papaya L.) fruit. Gomes ACA; da Costa Lima M; de Oliveira KÁR; Dos Santos Lima M; Magnani M; Câmara MPS; de Souza EL Int J Food Microbiol; 2020 Oct; 331():108694. PubMed ID: 32521373 [TBL] [Abstract][Full Text] [Related]
11. Colletotrichum Gloesporioides Inhibition In Situ by Chitosan- Grande Tovar CD; Delgado-Ospina J; Navia Porras DP; Peralta-Ruiz Y; Cordero AP; Castro JI; Chaur Valencia MN; Mina JH; Chaves López C Biomolecules; 2019 Aug; 9(9):. PubMed ID: 31443462 [TBL] [Abstract][Full Text] [Related]
12. Distribution and Pathogenicity of Tovar-Pedraza JM; Mora-Aguilera JA; Nava-Díaz C; Lima NB; Michereff SJ; Sandoval-Islas JS; Câmara MPS; Téliz-Ortiz D; Leyva-Mir SG Plant Dis; 2020 Jan; 104(1):137-146. PubMed ID: 31730415 [TBL] [Abstract][Full Text] [Related]
13. Assessment of Cymbopogon citratus (DC.) stapf essential oil as herbal preservatives based on antifungal, antiaflatoxin, and antiochratoxin activities and in vivo efficacy during storage. Sonker N; Pandey AK; Singh P; Tripathi NN J Food Sci; 2014 Apr; 79(4):M628-34. PubMed ID: 24547889 [TBL] [Abstract][Full Text] [Related]
14. Biocontrol of Postharvest Anthracnose of Mango Fruit with Debaryomyces Nepalensis and Effects on Storage Quality and Postharvest Physiology. Luo S; Wan B; Feng S; Shao Y J Food Sci; 2015 Nov; 80(11):M2555-63. PubMed ID: 26445226 [TBL] [Abstract][Full Text] [Related]
15. Identification and Characterization of Colletotrichum Species Associated with Mango Anthracnose in Guangxi, China. Mo J; Zhao G; Li Q; Solangi GS; Tang L; Guo T; Huang S; Hsiang T Plant Dis; 2018 Jul; 102(7):1283-1289. PubMed ID: 30673569 [TBL] [Abstract][Full Text] [Related]
16. Improvement of Postharvest Anthracnose Resistance in Mango Fruit by Nitric Oxide and the Possible Mechanisms Involved. Ren Y; Xue Y; Tian D; Zhang L; Xiao G; He J J Agric Food Chem; 2020 Dec; 68(52):15460-15467. PubMed ID: 33320657 [TBL] [Abstract][Full Text] [Related]
17. Formulation of the biological control yeast Meyerozyma caribbica by electrospraying process: effect on postharvest control of anthracnose in mango (Mangifera indica L.) and papaya (Carica papaya L.). Aguirre-Güitrón L; Calderón-Santoyo M; Lagarón JM; Prieto C; Ragazzo-Sánchez JA J Sci Food Agric; 2022 Jan; 102(2):696-706. PubMed ID: 34173241 [TBL] [Abstract][Full Text] [Related]
18. Multi-genetic Analysis of Zhafarina S; Wibowo A; Widiastuti A Pak J Biol Sci; 2021 Jan; 24(1):53-65. PubMed ID: 33683031 [TBL] [Abstract][Full Text] [Related]