These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. MicroRNA-223 Induced Repolarization of Peritoneal Macrophages Using CD44 Targeting Hyaluronic Acid Nanoparticles for Anti-Inflammatory Effects. Tran TH; Krishnan S; Amiji MM PLoS One; 2016; 11(5):e0152024. PubMed ID: 27148749 [TBL] [Abstract][Full Text] [Related]
3. Modulation of Macrophage Functional Polarity towards Anti-Inflammatory Phenotype with Plasmid DNA Delivery in CD44 Targeting Hyaluronic Acid Nanoparticles. Tran TH; Rastogi R; Shelke J; Amiji MM Sci Rep; 2015 Nov; 5():16632. PubMed ID: 26577684 [TBL] [Abstract][Full Text] [Related]
4. Peritoneal Macrophage-Specific TNF-α Gene Silencing in LPS-Induced Acute Inflammation Model Using CD44 Targeting Hyaluronic Acid Nanoparticles. Kosovrasti VY; Nechev LV; Amiji MM Mol Pharm; 2016 Oct; 13(10):3404-3416. PubMed ID: 27552547 [TBL] [Abstract][Full Text] [Related]
5. Chrysin-nanoencapsulated PLGA-PEG for macrophage repolarization: Possible application in tissue regeneration. Firouzi-Amandi A; Dadashpour M; Nouri M; Zarghami N; Serati-Nouri H; Jafari-Gharabaghlou D; Karzar BH; Mellatyar H; Aghebati-Maleki L; Babaloo Z; Pilehvar-Soltanahmadi Y Biomed Pharmacother; 2018 Sep; 105():773-780. PubMed ID: 29909345 [TBL] [Abstract][Full Text] [Related]
6. Ameliorative Effect of Curcumin-Encapsulated Hyaluronic Acid-PLA Nanoparticles on Thioacetamide-Induced Murine Hepatic Fibrosis. Chen YN; Hsu SL; Liao MY; Liu YT; Lai CH; Chen JF; Nguyen MT; Su YH; Chen ST; Wu LC Int J Environ Res Public Health; 2016 Dec; 14(1):. PubMed ID: 28029125 [TBL] [Abstract][Full Text] [Related]
7. Redox-Responsive and Dual-Targeting Hyaluronic Acid-Methotrexate Prodrug Self-Assembling Nanoparticles for Enhancing Intracellular Drug Self-Delivery. Zhang Y; Li Y; Tian H; Zhu Q; Wang F; Fan Z; Zhou S; Wang X; Xie L; Hou Z Mol Pharm; 2019 Jul; 16(7):3133-3144. PubMed ID: 31198046 [TBL] [Abstract][Full Text] [Related]
8. Repolarization of Tumor-Associated Macrophages in a Genetically Engineered Nonsmall Cell Lung Cancer Model by Intraperitoneal Administration of Hyaluronic Acid-Based Nanoparticles Encapsulating MicroRNA-125b. Parayath NN; Parikh A; Amiji MM Nano Lett; 2018 Jun; 18(6):3571-3579. PubMed ID: 29722542 [TBL] [Abstract][Full Text] [Related]
9. Harnessing hyaluronic acid-based nanoparticles for combination therapy: A novel approach for suppressing systemic inflammation and to promote antitumor macrophage polarization. Rangasami VK; Samanta S; Parihar VS; Asawa K; Zhu K; Varghese OP; Teramura Y; Nilsson B; Hilborn J; Harris RA; Oommen OP Carbohydr Polym; 2021 Feb; 254():117291. PubMed ID: 33357860 [TBL] [Abstract][Full Text] [Related]
10. Curcumin-loaded PLA-PEG copolymer nanoparticles for treatment of liver inflammation in streptozotocin-induced diabetic rats. El-Naggar ME; Al-Joufi F; Anwar M; Attia MF; El-Bana MA Colloids Surf B Biointerfaces; 2019 May; 177():389-398. PubMed ID: 30785036 [TBL] [Abstract][Full Text] [Related]
11. The CD44-Mediated Uptake of Hyaluronic Acid-Based Carriers in Macrophages. Rios de la Rosa JM; Tirella A; Gennari A; Stratford IJ; Tirelli N Adv Healthc Mater; 2017 Feb; 6(4):. PubMed ID: 27990775 [TBL] [Abstract][Full Text] [Related]
12. Hyaluronic acid/polyethylene glycol nanoparticles for controlled delivery of mitoxantrone. Sargazi A; Kamali N; Shiri F; Heidari Majd M Artif Cells Nanomed Biotechnol; 2018 May; 46(3):500-509. PubMed ID: 28503952 [TBL] [Abstract][Full Text] [Related]
13. CD44 targeting biocompatible and biodegradable hyaluronic acid cross-linked zein nanogels for curcumin delivery to cancer cells: In vitro and in vivo evaluation. Seok HY; Sanoj Rejinold N; Lekshmi KM; Cherukula K; Park IK; Kim YC J Control Release; 2018 Jun; 280():20-30. PubMed ID: 29723613 [TBL] [Abstract][Full Text] [Related]
14. Desirable PEGylation for improving tumor selectivity of hyaluronic acid-based nanoparticles via low hepatic captured, long circulation times and CD44 receptor-mediated tumor targeting. Teng C; Chai Z; Yuan Z; Ren L; Lin C; Yan Z; He W; Qin C; Yang L; Han X; Yin L Nanomedicine; 2020 Feb; 24():102105. PubMed ID: 31740406 [TBL] [Abstract][Full Text] [Related]
15. Hyaluronic Acid Engineered Nanomicelles Loaded with 3,4-Difluorobenzylidene Curcumin for Targeted Killing of CD44+ Stem-Like Pancreatic Cancer Cells. Kesharwani P; Banerjee S; Padhye S; Sarkar FH; Iyer AK Biomacromolecules; 2015 Sep; 16(9):3042-53. PubMed ID: 26302089 [TBL] [Abstract][Full Text] [Related]
16. Effect of molecular weight of hyaluronan on zein-based nanoparticles: Fabrication, structural characterization and delivery of curcumin. Chen S; Han Y; Sun C; Dai L; Yang S; Wei Y; Mao L; Yuan F; Gao Y Carbohydr Polym; 2018 Dec; 201():599-607. PubMed ID: 30241858 [TBL] [Abstract][Full Text] [Related]
17. CD44 Assists the Topical Anti-Psoriatic Efficacy of Curcumin-Loaded Hyaluronan-Modified Ethosomes: A New Strategy for Clustering Drug in Inflammatory Skin. Zhang Y; Xia Q; Li Y; He Z; Li Z; Guo T; Wu Z; Feng N Theranostics; 2019; 9(1):48-64. PubMed ID: 30662553 [No Abstract] [Full Text] [Related]
18. A multi-functional macrophage and tumor targeting gene delivery system for the regulation of macrophage polarity and reversal of cancer immunoresistance. He XY; Liu BY; Xu C; Zhuo RX; Cheng SX Nanoscale; 2018 Aug; 10(33):15578-15587. PubMed ID: 30090893 [TBL] [Abstract][Full Text] [Related]
19. Preparation of Hyaluronic Acid-Based Nanoparticles for Macrophage-Targeted MicroRNA Delivery and Transfection. Parayath NN; Amiji MM Methods Mol Biol; 2020; 2118():99-110. PubMed ID: 32152973 [TBL] [Abstract][Full Text] [Related]
20. Design and development of novel hyaluronate-modified nanoparticles for combo-delivery of curcumin and alendronate: fabrication, characterization, and cellular and molecular evidences of enhanced bone regeneration. Dong J; Tao L; Abourehab MAS; Hussain Z Int J Biol Macromol; 2018 Sep; 116():1268-1281. PubMed ID: 29782984 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]