These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 29183379)

  • 41. Collaborative robotic biomechanical interactions and gait adjustments in young, non-impaired individuals.
    Dionisio VC; Brown DA
    J Neuroeng Rehabil; 2016 Jun; 13(1):57. PubMed ID: 27306027
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effectiveness of robotic exoskeletons for improving gait in children with cerebral palsy: A systematic review.
    Hunt M; Everaert L; Brown M; Muraru L; Hatzidimitriadou E; Desloovere K
    Gait Posture; 2022 Oct; 98():343-354. PubMed ID: 36306544
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A new lower limb portable exoskeleton for gait assistance in neurological patients: a proof of concept study.
    Puyuelo-Quintana G; Cano-de-la-Cuerda R; Plaza-Flores A; Garces-Castellote E; Sanz-Merodio D; Goñi-Arana A; Marín-Ojea J; García-Armada E
    J Neuroeng Rehabil; 2020 May; 17(1):60. PubMed ID: 32375815
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Walking With a Robotic Exoskeleton Does Not Mimic Natural Gait: A Within-Subjects Study.
    Swank C; Wang-Price S; Gao F; Almutairi S
    JMIR Rehabil Assist Technol; 2019 Jan; 6(1):e11023. PubMed ID: 31344681
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Dual-task training of children with neuromotor disorders during robot-assisted gait therapy: prerequisites of patients and influence on leg muscle activity.
    Ricklin S; Meyer-Heim A; van Hedel HJA
    J Neuroeng Rehabil; 2018 Sep; 15(1):82. PubMed ID: 30223840
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effect of body weight support variation on muscle activities during robot assisted gait: a dynamic simulation study.
    Hussain S; Jamwal PK; Ghayesh MH
    Comput Methods Biomech Biomed Engin; 2017 May; 20(6):626-635. PubMed ID: 28349768
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Gait Entrainment to Torque Pulses From a Hip Exoskeleton Robot.
    Lee J; Huber ME; Hogan N
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():656-667. PubMed ID: 35286261
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Overground Robot-Assisted Gait Training for Pediatric Cerebral Palsy.
    Kim SK; Park D; Yoo B; Shim D; Choi JO; Choi TY; Park ES
    Sensors (Basel); 2021 Mar; 21(6):. PubMed ID: 33809758
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effect of reducing assistance during robot-assisted gait training on step length asymmetry in patients with hemiplegic stroke: A randomized controlled pilot trial.
    Seo JS; Yang HS; Jung S; Kang CS; Jang S; Kim DH
    Medicine (Baltimore); 2018 Aug; 97(33):e11792. PubMed ID: 30113466
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Selective control of gait subtasks in robotic gait training: foot clearance support in stroke survivors with a powered exoskeleton.
    Koopman B; van Asseldonk EH; van der Kooij H
    J Neuroeng Rehabil; 2013 Jan; 10():3. PubMed ID: 23336754
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A Robotic Exoskeleton for Treatment of Crouch Gait in Children With Cerebral Palsy: Design and Initial Application.
    Lerner ZF; Damiano DL; Park HS; Gravunder AJ; Bulea TC
    IEEE Trans Neural Syst Rehabil Eng; 2017 Jun; 25(6):650-659. PubMed ID: 27479974
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The effect of pelvic movements of a gait training system for stroke patients: a single blind, randomized, parallel study.
    Son C; Lee A; Lee J; Kim D; Kim SJ; Chun MH; Choi J
    J Neuroeng Rehabil; 2021 Dec; 18(1):185. PubMed ID: 34961541
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The effect of impedance-controlled robotic gait training on walking ability and quality in individuals with chronic incomplete spinal cord injury: an explorative study.
    Fleerkotte BM; Koopman B; Buurke JH; van Asseldonk EH; van der Kooij H; Rietman JS
    J Neuroeng Rehabil; 2014 Mar; 11():26. PubMed ID: 24594284
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Comparative Effects of Different Assistance Force During Robot-Assisted Gait Training on Locomotor Functions in Patients With Subacute Stroke: An Assessor-Blind, Randomized Controlled Trial.
    Park IJ; Park JH; Seong HY; You JSH; Kim SJ; Min JH; Ko HY; Shin YI
    Am J Phys Med Rehabil; 2019 Jan; 98(1):58-64. PubMed ID: 30142092
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Biomechanical effects of robot assisted walking on knee joint kinematics and muscle activation pattern.
    Thangavel P; Vidhya S; Li J; Chew E; Bezerianos A; Yu H
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():252-257. PubMed ID: 28813827
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Learning to walk with an adaptive gain proportional myoelectric controller for a robotic ankle exoskeleton.
    Koller JR; Jacobs DA; Ferris DP; Remy CD
    J Neuroeng Rehabil; 2015 Nov; 12():97. PubMed ID: 26536868
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Robot-mediated overground gait training for transfemoral amputees with a powered bilateral hip orthosis: a pilot study.
    Sanz-Morère CB; Martini E; Meoni B; Arnetoli G; Giffone A; Doronzio S; Fanciullacci C; Parri A; Conti R; Giovacchini F; Friðriksson Þ; Romo D; Crea S; Molino-Lova R; Vitiello N
    J Neuroeng Rehabil; 2021 Jul; 18(1):111. PubMed ID: 34217307
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Different Effects of Robot-Assisted Gait and Independent Over-Ground Gait on Foot Plantar Pressure in Incomplete Spinal Cord Injury: A Preliminary Study.
    Bae YH; Chang WH; Fong SSM
    Int J Environ Res Public Health; 2021 Nov; 18(22):. PubMed ID: 34831823
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Increased gait variability during robot-assisted walking is accompanied by increased sensorimotor brain activity in healthy people.
    Berger A; Horst F; Steinberg F; Thomas F; Müller-Eising C; Schöllhorn WI; Doppelmayr M
    J Neuroeng Rehabil; 2019 Dec; 16(1):161. PubMed ID: 31882008
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Clinical feasibility of gait training with a robotic exoskeleton (WPAL) in an individual with both incomplete cervical and complete thoracic spinal cord injury: A case study.
    Tanabe S; Koyama S; Saitoh E; Hirano S; Yatsuya K; Tsunoda T; Katoh M; Gotoh T; Furumoto A
    NeuroRehabilitation; 2017; 41(1):85-95. PubMed ID: 28527225
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.