These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 29183407)
1. Phage-mediated dissemination of virulence factors in pathogenic bacteria facilitated by antibiotic growth promoters in animals: a perspective. Tamang MD; Sunwoo H; Jeon B Anim Health Res Rev; 2017 Dec; 18(2):160-166. PubMed ID: 29183407 [TBL] [Abstract][Full Text] [Related]
2. The disparate effects of bacteriophages on antibiotic-resistant bacteria. Torres-Barceló C Emerg Microbes Infect; 2018 Oct; 7(1):168. PubMed ID: 30302018 [TBL] [Abstract][Full Text] [Related]
4. The sub-inhibitory theory for antibiotic growth promoters. Broom LJ Poult Sci; 2017 Sep; 96(9):3104-3108. PubMed ID: 28595312 [TBL] [Abstract][Full Text] [Related]
5. Possible drugs for the treatment of bacterial infections in the future: anti-virulence drugs. Ogawara H J Antibiot (Tokyo); 2021 Jan; 74(1):24-41. PubMed ID: 32647212 [TBL] [Abstract][Full Text] [Related]
6. Transfer of antibiotic-resistance genes via phage-related mobile elements. Brown-Jaque M; Calero-Cáceres W; Muniesa M Plasmid; 2015 May; 79():1-7. PubMed ID: 25597519 [TBL] [Abstract][Full Text] [Related]
7. Cryptic prophages as targets for drug development. Wang X; Wood TK Drug Resist Updat; 2016 Jul; 27():30-8. PubMed ID: 27449596 [TBL] [Abstract][Full Text] [Related]
8. Occurrence, selection and spread of resistance to antimicrobial agents used for growth promotion for food animals in Denmark. Aarestrup FM APMIS Suppl; 2000; 101():1-48. PubMed ID: 11125553 [TBL] [Abstract][Full Text] [Related]
9. Use of bacteriophage to target bacterial surface structures required for virulence: a systematic search for antibiotic alternatives. Orndorff PE Curr Genet; 2016 Nov; 62(4):753-757. PubMed ID: 27113766 [TBL] [Abstract][Full Text] [Related]
10. Effects of single and combined use of bacteriophages and antibiotics to inactivate Escherichia coli. Valério N; Oliveira C; Jesus V; Branco T; Pereira C; Moreirinha C; Almeida A Virus Res; 2017 Aug; 240():8-17. PubMed ID: 28746884 [TBL] [Abstract][Full Text] [Related]
11. Phage-antibiotic combinations: a promising approach to constrain resistance evolution in bacteria. North OI; Brown ED Ann N Y Acad Sci; 2021 Jul; 1496(1):23-34. PubMed ID: 33175408 [TBL] [Abstract][Full Text] [Related]
12. Effect of Phage-Antibiotic Synergism (PAS) in increasing antibiotic inhibition of bacteria caused of foodborne diseases. Iqbal M; Narulita E; Zahra F; Murdiyah S J Infect Dev Ctries; 2020 May; 14(5):488-493. PubMed ID: 32525835 [TBL] [Abstract][Full Text] [Related]
13. Exploring the contribution of bacteriophages to antibiotic resistance. Lekunberri I; Subirats J; Borrego CM; Balcázar JL Environ Pollut; 2017 Jan; 220(Pt B):981-984. PubMed ID: 27890586 [TBL] [Abstract][Full Text] [Related]
14. Bacteriophages: the possible solution to treat infections caused by pathogenic bacteria. El-Shibiny A; El-Sahhar S Can J Microbiol; 2017 Nov; 63(11):865-879. PubMed ID: 28863269 [TBL] [Abstract][Full Text] [Related]
15. Implications of bacteriophages on the acquisition and spread of antibiotic resistance in the environment. Balcázar JL Int Microbiol; 2020 Nov; 23(4):475-479. PubMed ID: 32002743 [TBL] [Abstract][Full Text] [Related]
16. Antibiotic resistance in bacteria associated with food animals: a United States perspective of livestock production. Mathew AG; Cissell R; Liamthong S Foodborne Pathog Dis; 2007; 4(2):115-33. PubMed ID: 17600481 [TBL] [Abstract][Full Text] [Related]
17. Evolutionary Rationale for Phages as Complements of Antibiotics. Torres-Barceló C; Hochberg ME Trends Microbiol; 2016 Apr; 24(4):249-256. PubMed ID: 26786863 [TBL] [Abstract][Full Text] [Related]
18. Disarming pathogens: benefits and challenges of antimicrobials that target bacterial virulence instead of growth and viability. Totsika M Future Med Chem; 2017 Mar; 9(3):267-269. PubMed ID: 28207349 [No Abstract] [Full Text] [Related]