These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 2918368)

  • 1. The two major phosphoproteins in growth cones are probably identical to two protein kinase C substrates correlated with persistence of long-term potentiation.
    Nelson RB; Linden DJ; Hyman C; Pfenninger KH; Routtenberg A
    J Neurosci; 1989 Feb; 9(2):381-9. PubMed ID: 2918368
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phosphoprotein F1: purification and characterization of a brain kinase C substrate related to plasticity.
    Chan SY; Murakami K; Routtenberg A
    J Neurosci; 1986 Dec; 6(12):3618-27. PubMed ID: 3794793
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phosphoproteins localized to presynaptic terminal linked to persistence of long-term potentiation (LTP): quantitative analysis of two-dimensional gels.
    Nelson RB; Linden DJ; Routtenberg A
    Brain Res; 1989 Sep; 497(1):30-42. PubMed ID: 2790456
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct relation of long-term synaptic potentiation to phosphorylation of membrane protein F1, a substrate for membrane protein kinase C.
    Lovinger DM; Colley PA; Akers RF; Nelson RB; Routtenberg A
    Brain Res; 1986 Dec; 399(2):205-11. PubMed ID: 3828760
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of protein F1 (47 kDa, 4.5 pI): a kinase C substrate directly related to neural plasticity.
    Nelson RB; Routtenberg A
    Exp Neurol; 1985 Jul; 89(1):213-24. PubMed ID: 3159591
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calcium-promoted translocation of protein kinase C to synaptic membranes: relation to the phosphorylation of an endogenous substrate (protein F1) involved in synaptic plasticity.
    Akers RF; Routtenberg A
    J Neurosci; 1987 Dec; 7(12):3976-83. PubMed ID: 3121805
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Membrane proteins of the nerve growth cone and their developmental regulation.
    Simkowitz P; Ellis L; Pfenninger KH
    J Neurosci; 1989 Mar; 9(3):1004-17. PubMed ID: 2926476
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Time course and involvement of protein kinase C-mediated phosphorylation of F1/GAP-43 in area CA3 after mossy fiber stimulation.
    Son H; Davis PJ; Carpenter DO
    Cell Mol Neurobiol; 1997 Apr; 17(2):171-94. PubMed ID: 9140696
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein kinase C activation leading to protein F1 phosphorylation may regulate synaptic plasticity by presynaptic terminal growth.
    Routtenberg A
    Behav Neural Biol; 1985 Sep; 44(2):186-200. PubMed ID: 3904711
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein kinase C phosphorylates a 47 Mr protein (F1) directly related to synaptic plasticity.
    Akers RF; Routtenberg A
    Brain Res; 1985 May; 334(1):147-51. PubMed ID: 3158377
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Increased phosphorylation of a 17-kDa protein kinase C substrate (P17) in long-term potentiation.
    Klann E; Chen SJ; Sweatt JD
    J Neurochem; 1992 Apr; 58(4):1576-9. PubMed ID: 1548487
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Arachidonic acid, but not sodium nitroprusside, stimulates presynaptic protein kinase C and phosphorylation of GAP-43 in rat hippocampal slices and synaptosomes.
    Luo Y; Vallano ML
    J Neurochem; 1995 Apr; 64(4):1808-18. PubMed ID: 7891109
    [TBL] [Abstract][Full Text] [Related]  

  • 13. NMDA receptor blockade prevents the increase in protein kinase C substrate (protein F1) phosphorylation produced by long-term potentiation.
    Linden DJ; Wong KL; Sheu FS; Routtenberg A
    Brain Res; 1988 Aug; 458(1):142-6. PubMed ID: 2905192
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neuron-specific protein F1/GAP-43 shows substrate specificity for the beta subtype of protein kinase C.
    Sheu FS; Marais RM; Parker PJ; Bazan NG; Routtenberg A
    Biochem Biophys Res Commun; 1990 Sep; 171(3):1236-43. PubMed ID: 2145833
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibition of protein kinase C blocks two components of LTP persistence, leaving initial potentiation intact.
    Colley PA; Sheu FS; Routtenberg A
    J Neurosci; 1990 Oct; 10(10):3353-60. PubMed ID: 2213144
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contrasting patterns of protein phosphorylation in human normal and Alzheimer brain: focus on protein kinase C and protein F1/GAP-43.
    Florez JC; Nelson RB; Routtenberg A
    Exp Neurol; 1991 Jun; 112(3):264-72. PubMed ID: 1827625
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Long-term potentiation and synaptic protein phosphorylation.
    Pasinelli P; Ramakers GM; Urban IJ; Hens JJ; Oestreicher AB; de Graan PN; Gispen WH
    Behav Brain Res; 1995 Jan; 66(1-2):53-9. PubMed ID: 7755899
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selective decline in protein F1 phosphorylation in hippocampus of senescent rats.
    Barnes CA; Mizumori SJ; Lovinger DM; Sheu FS; Murakami K; Chan SY; Linden DJ; Nelson RB; Routtenberg A
    Neurobiol Aging; 1988; 9(4):393-8. PubMed ID: 3185858
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dephosphin, a 96,000 Da substrate of protein kinase C in synaptosomal cytosol, is phosphorylated in intact synaptosomes.
    Robinson PJ
    FEBS Lett; 1991 May; 282(2):388-92. PubMed ID: 2037055
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Activation of protein kinase C by arachidonic acid selectively enhances the phosphorylation of GAP-43 in nerve terminal membranes.
    Schaechter JD; Benowitz LI
    J Neurosci; 1993 Oct; 13(10):4361-71. PubMed ID: 8410192
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.