BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

462 related articles for article (PubMed ID: 29183891)

  • 21. Targeting Tissue Factor for Immunotherapy of Triple-Negative Breast Cancer Using a Second-Generation ICON.
    Hu Z; Shen R; Campbell A; McMichael E; Yu L; Ramaswamy B; London CA; Xu T; Carson WE
    Cancer Immunol Res; 2018 Jun; 6(6):671-684. PubMed ID: 29622581
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A novel AXL chimeric antigen receptor endows T cells with anti-tumor effects against triple negative breast cancers.
    Wei J; Sun H; Zhang A; Wu X; Li Y; Liu J; Duan Y; Xiao F; Wang H; Lv M; Wang L; Wu C
    Cell Immunol; 2018 Sep; 331():49-58. PubMed ID: 29935762
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The exosomes derived from CAR-T cell efficiently target mesothelin and reduce triple-negative breast cancer growth.
    Yang P; Cao X; Cai H; Feng P; Chen X; Zhu Y; Yang Y; An W; Yang Y; Jie J
    Cell Immunol; 2021 Feb; 360():104262. PubMed ID: 33373818
    [TBL] [Abstract][Full Text] [Related]  

  • 24. E1A-mediated inhibition of HSPA5 suppresses cell migration and invasion in triple-negative breast cancer.
    Chen HA; Chang YW; Tseng CF; Chiu CF; Hong CC; Wang W; Wang MY; Hsiao M; Ma JT; Chen CH; Jiang SS; Wu CH; Hung MC; Huang MT; Su JL
    Ann Surg Oncol; 2015 Mar; 22(3):889-98. PubMed ID: 25212833
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A novel approach for targeted elimination of CSPG4-positive triple-negative breast cancer cells using a MAP tau-based fusion protein.
    Amoury M; Mladenov R; Nachreiner T; Pham AT; Hristodorov D; Di Fiore S; Helfrich W; Pardo A; Fey G; Schwenkert M; Thepen T; Kiessling F; Hussain AF; Fischer R; Kolberg K; Barth S
    Int J Cancer; 2016 Aug; 139(4):916-27. PubMed ID: 27037627
    [TBL] [Abstract][Full Text] [Related]  

  • 26. miR-629-3p may serve as a novel biomarker and potential therapeutic target for lung metastases of triple-negative breast cancer.
    Wang J; Song C; Tang H; Zhang C; Tang J; Li X; Chen B; Xie X
    Breast Cancer Res; 2017 Jun; 19(1):72. PubMed ID: 28629464
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Combination Therapy with Bispecific Antibodies and PD-1 Blockade Enhances the Antitumor Potency of T Cells.
    Chang CH; Wang Y; Li R; Rossi DL; Liu D; Rossi EA; Cardillo TM; Goldenberg DM
    Cancer Res; 2017 Oct; 77(19):5384-5394. PubMed ID: 28819027
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evaluation of anti-PD-1-based therapy against triple-negative breast cancer patient-derived xenograft tumors engrafted in humanized mouse models.
    Rosato RR; Dávila-González D; Choi DS; Qian W; Chen W; Kozielski AJ; Wong H; Dave B; Chang JC
    Breast Cancer Res; 2018 Sep; 20(1):108. PubMed ID: 30185216
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Preclinical evaluation of cyclin dependent kinase 11 and casein kinase 2 survival kinases as RNA interference targets for triple negative breast cancer therapy.
    Kren BT; Unger GM; Abedin MJ; Vogel RI; Henzler CM; Ahmed K; Trembley JH
    Breast Cancer Res; 2015; 17():19. PubMed ID: 25837326
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Combination Immunotherapy of MUC1 mRNA Nano-vaccine and CTLA-4 Blockade Effectively Inhibits Growth of Triple Negative Breast Cancer.
    Liu L; Wang Y; Miao L; Liu Q; Musetti S; Li J; Huang L
    Mol Ther; 2018 Jan; 26(1):45-55. PubMed ID: 29258739
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Phosphatidylserine-targeting antibodies augment the anti-tumorigenic activity of anti-PD-1 therapy by enhancing immune activation and downregulating pro-oncogenic factors induced by T-cell checkpoint inhibition in murine triple-negative breast cancers.
    Gray MJ; Gong J; Hatch MM; Nguyen V; Hughes CC; Hutchins JT; Freimark BD
    Breast Cancer Res; 2016 May; 18(1):50. PubMed ID: 27169467
    [TBL] [Abstract][Full Text] [Related]  

  • 32. MiR-148a functions to suppress metastasis and serves as a prognostic indicator in triple-negative breast cancer.
    Xu X; Zhang Y; Jasper J; Lykken E; Alexander PB; Markowitz GJ; McDonnell DP; Li QJ; Wang XF
    Oncotarget; 2016 Apr; 7(15):20381-94. PubMed ID: 26967387
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Targeting and suppression of HER3-positive breast cancer by T lymphocytes expressing a heregulin chimeric antigen receptor.
    Zuo BL; Yan B; Zheng GX; Xi WJ; Zhang X; Yang AG; Jia LT
    Cancer Immunol Immunother; 2018 Mar; 67(3):393-401. PubMed ID: 29127433
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Emerging Immunotherapies against Novel Molecular Targets in Breast Cancer.
    Sivaganesh V; Promi N; Maher S; Peethambaran B
    Int J Mol Sci; 2021 Feb; 22(5):. PubMed ID: 33670942
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Targeting the cancer-associated fibroblasts as a treatment in triple-negative breast cancer.
    Takai K; Le A; Weaver VM; Werb Z
    Oncotarget; 2016 Dec; 7(50):82889-82901. PubMed ID: 27756881
    [TBL] [Abstract][Full Text] [Related]  

  • 36. CAR-based immunotherapy for breast cancer: peculiarities, ongoing investigations, and future strategies.
    Niu Z; Wu J; Zhao Q; Zhang J; Zhang P; Yang Y
    Front Immunol; 2024; 15():1385571. PubMed ID: 38680498
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Targeting Triple-Negative Breast Cancer with Combination Therapy of EGFR CAR T Cells and CDK7 Inhibition.
    Xia L; Zheng Z; Liu JY; Chen YJ; Ding J; Hu GS; Hu YH; Liu S; Luo WX; Xia NS; Liu W
    Cancer Immunol Res; 2021 Jun; 9(6):707-722. PubMed ID: 33875483
    [TBL] [Abstract][Full Text] [Related]  

  • 38.
    Stüber T; Monjezi R; Wallstabe L; Kühnemundt J; Nietzer SL; Dandekar G; Wöckel A; Einsele H; Wischhusen J; Hudecek M
    J Immunother Cancer; 2020 Apr; 8(1):. PubMed ID: 32303620
    [TBL] [Abstract][Full Text] [Related]  

  • 39. CAR T-cell therapy for triple-negative breast cancer: Where we are.
    Xie Y; Hu Y; Zhou N; Yao C; Wu L; Liu L; Chen F
    Cancer Lett; 2020 Oct; 491():121-131. PubMed ID: 32795486
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Autologous patient-derived exhausted nano T-cells exploit tumor immune evasion to engage an effective cancer therapy.
    Blaya-Cánovas JL; Griñán-Lisón C; Blancas I; Marchal JA; Ramírez-Tortosa C; López-Tejada A; Benabdellah K; Cortijo-Gutiérrez M; Cano-Cortés MV; Graván P; Navarro-Marchal SA; Gómez-Morales J; Delgado-Almenta V; Calahorra J; Agudo-Lera M; Sagarzazu A; Rodríguez-González CJ; Gallart-Aragón T; Eich C; Sánchez-Martín RM; Granados-Principal S
    Mol Cancer; 2024 May; 23(1):83. PubMed ID: 38730475
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 24.