These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 29184074)

  • 1. Scaling relationships and theory for vibrational frequencies of adsorbates on transition metal surfaces.
    Lansford JL; Mironenko AV; Vlachos DG
    Nat Commun; 2017 Nov; 8(1):1842. PubMed ID: 29184074
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Atomic and molecular adsorption on transition-metal carbide (111) surfaces from density-functional theory: a trend study of surface electronic factors.
    Vojvodic A; Ruberto C; Lundqvist BI
    J Phys Condens Matter; 2010 Sep; 22(37):375504. PubMed ID: 21403200
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A unified picture of adsorption on transition metals through different atoms.
    Montemore MM; Medlin JW
    J Am Chem Soc; 2014 Jul; 136(26):9272-5. PubMed ID: 24931651
    [TBL] [Abstract][Full Text] [Related]  

  • 4. How molecular is the chemisorptive bond?
    van Santen RA; Tranca I
    Phys Chem Chem Phys; 2016 Aug; 18(31):20868-94. PubMed ID: 27357949
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Limits to scaling relations between adsorption energies?
    Vijay S; Kastlunger G; Chan K; Nørskov JK
    J Chem Phys; 2022 Jun; 156(23):231102. PubMed ID: 35732521
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Energies of Adsorbed Catalytic Intermediates on Transition Metal Surfaces: Calorimetric Measurements and Benchmarks for Theory.
    Campbell CT
    Acc Chem Res; 2019 Apr; 52(4):984-993. PubMed ID: 30879291
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Configurational correlations in the coverage dependent adsorption energies of oxygen atoms on late transition metal fcc(111) surfaces.
    Miller SD; Inoğlu N; Kitchin JR
    J Chem Phys; 2011 Mar; 134(10):104709. PubMed ID: 21405186
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transition-state correlations for predicting thermochemistry of adsorbates and surface reactions.
    Kurdziel SJ; Vlachos DG
    Phys Chem Chem Phys; 2023 Mar; 25(12):8412-8423. PubMed ID: 36912605
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spectroscopic Probe Molecule Selection Using Quantum Theory, First-Principles Calculations, and Machine Learning.
    Lansford JL; Vlachos DG
    ACS Nano; 2020 Dec; 14(12):17295-17307. PubMed ID: 33196162
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantifying the origin of inter-adsorbate interactions on reactive surfaces for catalyst screening and design.
    Krishnamoorthy A; Yildiz B
    Phys Chem Chem Phys; 2015 Sep; 17(34):22227-34. PubMed ID: 26243171
    [TBL] [Abstract][Full Text] [Related]  

  • 11. What can we learn about electrode-chemisorbate bonding energetics from vibrational spectroscopy? An assessment from density functional theory.
    Wasileski SA; Weaver MJ
    Faraday Discuss; 2002; (121):285-300; discussion 331-64. PubMed ID: 12227575
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Factors that influence hydrogen binding at metal-atop sites.
    Zheng H; Li H; Luo L; Zhao Z; Henkelman G
    J Chem Phys; 2021 Jul; 155(2):024703. PubMed ID: 34266273
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vibrational recognition of adsorption sites for CO on platinum and platinum-ruthenium surfaces.
    Dabo I; Wieckowski A; Marzari N
    J Am Chem Soc; 2007 Sep; 129(36):11045-52. PubMed ID: 17705376
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adsorbate-adsorbate interactions and chemisorption at different coverages studied by accurate ab initio calculations: CO on transition metal surfaces.
    Mason SE; Grinberg I; Rappe AM
    J Phys Chem B; 2006 Mar; 110(8):3816-22. PubMed ID: 16494441
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two distinctive energy migration pathways of monolayer molecules on metal nanoparticle surfaces.
    Li J; Qian H; Chen H; Zhao Z; Yuan K; Chen G; Miranda A; Guo X; Chen Y; Zheng N; Wong MS; Zheng J
    Nat Commun; 2016 Feb; 7():10749. PubMed ID: 26883665
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adsorbate diffusion on transition metal nanoparticles.
    Peng G; Mavrikakis M
    Nano Lett; 2015 Jan; 15(1):629-34. PubMed ID: 25422876
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Establishing and Understanding Adsorption-Energy Scaling Relations with Negative Slopes.
    Su HY; Sun K; Wang WQ; Zeng Z; Calle-Vallejo F; Li WX
    J Phys Chem Lett; 2016 Dec; 7(24):5302-5306. PubMed ID: 27973860
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Understanding the Reactivity of Layered Transition-Metal Sulfides: A Single Electronic Descriptor for Structure and Adsorption.
    Tsai C; Chan K; Nørskov JK; Abild-Pedersen F
    J Phys Chem Lett; 2014 Nov; 5(21):3884-9. PubMed ID: 26278764
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adsorption of Hydrogen Sulfide, Hydrosulfide and Sulfide at Cu(110) - Polarizability and Cooperativity Effects. First Stages of Formation of a Sulfide Layer.
    Lousada CM; Johansson AJ; Korzhavyi PA
    Chemphyschem; 2018 Sep; 19(17):2159-2168. PubMed ID: 29797487
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Universality in surface mixing rule of adsorption strength for small adsorbates on binary transition metal alloys.
    Ko J; Kwon H; Kang H; Kim BK; Han JW
    Phys Chem Chem Phys; 2015 Feb; 17(5):3123-30. PubMed ID: 25515855
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.