BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 29184169)

  • 1. NMNAT1 variants cause cone and cone-rod dystrophy.
    Nash BM; Symes R; Goel H; Dinger ME; Bennetts B; Grigg JR; Jamieson RV
    Eur J Hum Genet; 2018 Mar; 26(3):428-433. PubMed ID: 29184169
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel compound heterozygous NMNAT1 variants associated with Leber congenital amaurosis.
    Siemiatkowska AM; van den Born LI; van Genderen MM; Bertelsen M; Zobor D; Rohrschneider K; van Huet RA; Nurohmah S; Klevering BJ; Kohl S; Faradz SM; Rosenberg T; den Hollander AI; Collin RW; Cremers FP
    Mol Vis; 2014; 20():753-9. PubMed ID: 24940029
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A NOVEL CASE SERIES OF NMNAT1-ASSOCIATED EARLY-ONSET RETINAL DYSTROPHY: EXTENDING THE PHENOTYPIC SPECTRUM.
    Kumaran N; Robson AG; Michaelides M
    Retin Cases Brief Rep; 2021 Mar; 15(2):139-144. PubMed ID: 30004997
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genome-wide linkage and sequence analysis challenge CCDC66 as a human retinal dystrophy candidate gene and support a distinct NMNAT1-related fundus phenotype.
    Khan AO; Budde BS; Nürnberg P; Kawalia A; Lenzner S; Bolz HJ
    Clin Genet; 2018 Jan; 93(1):149-154. PubMed ID: 28369829
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Clinical and genetic findings in a family with NMNAT1-associated Leber congenital amaurosis: case report and review of the literature.
    Hedergott A; Volk AE; Herkenrath P; Thiele H; Fricke J; Altmüller J; Nürnberg P; Kubisch C; Neugebauer A
    Graefes Arch Clin Exp Ophthalmol; 2015 Dec; 253(12):2239-46. PubMed ID: 26464178
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phenotyping and genotyping inherited retinal diseases: Molecular genetics, clinical and imaging features, and therapeutics of macular dystrophies, cone and cone-rod dystrophies, rod-cone dystrophies, Leber congenital amaurosis, and cone dysfunction syndromes.
    Georgiou M; Robson AG; Fujinami K; de Guimarães TAC; Fujinami-Yokokawa Y; Daich Varela M; Pontikos N; Kalitzeos A; Mahroo OA; Webster AR; Michaelides M
    Prog Retin Eye Res; 2024 May; 100():101244. PubMed ID: 38278208
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel missense NMNAT1 mutation identified in a consanguineous family with Leber congenital amaurosis by targeted next generation sequencing.
    Deng Y; Huang H; Wang Y; Liu Z; Li N; Chen Y; Li X; Li M; Zhou X; Mu D; Zhong J; Wu J; Su Y; Yi X; Zhu J
    Gene; 2015 Sep; 569(1):104-8. PubMed ID: 25988908
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nonpenetrance of the most frequent autosomal recessive leber congenital amaurosis mutation in NMNAT1.
    Siemiatkowska AM; Schuurs-Hoeijmakers JH; Bosch DG; Boonstra FN; Riemslag FC; Ruiter M; de Vries BB; den Hollander AI; Collin RW; Cremers FP
    JAMA Ophthalmol; 2014 Aug; 132(8):1002-4. PubMed ID: 24830548
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exome sequencing identifies NMNAT1 mutations as a cause of Leber congenital amaurosis.
    Chiang PW; Wang J; Chen Y; Fu Q; Zhong J; Chen Y; Yi X; Wu R; Gan H; Shi Y; Chen Y; Barnett C; Wheaton D; Day M; Sutherland J; Heon E; Weleber RG; Gabriel LA; Cong P; Chuang K; Ye S; Sallum JM; Qi M
    Nat Genet; 2012 Sep; 44(9):972-4. PubMed ID: 22842231
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NMNAT1 E257K variant, associated with Leber Congenital Amaurosis (LCA9), causes a mild retinal degeneration phenotype.
    Eblimit A; Zaneveld SA; Liu W; Thomas K; Wang K; Li Y; Mardon G; Chen R
    Exp Eye Res; 2018 Aug; 173():32-43. PubMed ID: 29674119
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Clinical course of a Japanese girl with Leber congenital amaurosis associated with a novel nonsense pathogenic variant in
    Kayazawa T; Kuniyoshi K; Hatsukawa Y; Fujinami K; Yoshitake K; Tsunoda K; Shimojo H; Iwata T; Kusaka S
    Ophthalmic Genet; 2022 Jun; 43(3):400-408. PubMed ID: 35026968
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hidden Genetic Variation in LCA9-Associated Congenital Blindness Explained by 5'UTR Mutations and Copy-Number Variations of NMNAT1.
    Coppieters F; Todeschini AL; Fujimaki T; Baert A; De Bruyne M; Van Cauwenbergh C; Verdin H; Bauwens M; Ongenaert M; Kondo M; Meire F; Murakami A; Veitia RA; Leroy BP; De Baere E
    Hum Mutat; 2015 Dec; 36(12):1188-96. PubMed ID: 26316326
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel variants identified with next-generation sequencing in Polish patients with cone-rod dystrophy.
    Wawrocka A; Skorczyk-Werner A; Wicher K; Niedziela Z; Ploski R; Rydzanicz M; Sykulski M; Kociecki J; Weisschuh N; Kohl S; Biskup S; Wissinger B; Krawczynski MR
    Mol Vis; 2018; 24():326-339. PubMed ID: 29769798
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Variants at codon 838 in the
    Sun Z; Wu S; Zhu T; Li H; Wei X; Du H; Sui R
    Ophthalmic Genet; 2020 Dec; 41(6):548-555. PubMed ID: 32811265
    [TBL] [Abstract][Full Text] [Related]  

  • 15. NMNAT1-ASSOCIATED CONE-ROD DYSTROPHY: EVIDENCE FOR A SPECTRUM OF FOVEAL MALDEVELOPMENT.
    Bedoukian EC; Zhu X; Serrano LW; Scoles D; Aleman TS
    Retin Cases Brief Rep; 2022 May; 16(3):385-392. PubMed ID: 32150116
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NMNAT1 and hereditary spastic paraplegia (HSP): expanding the phenotypic spectrum of NMNAT1 variants.
    Sadr Z; Ghasemi A; Rohani M; Alavi A
    Neuromuscul Disord; 2023 Apr; 33(4):295-301. PubMed ID: 36871412
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pathogenicity discrimination and genetic test reference for CRX variants based on genotype-phenotype analysis.
    Yi Z; Xiao X; Li S; Sun W; Zhang Q
    Exp Eye Res; 2019 Dec; 189():107846. PubMed ID: 31626798
    [TBL] [Abstract][Full Text] [Related]  

  • 18. NMNAT1 mutations cause Leber congenital amaurosis.
    Falk MJ; Zhang Q; Nakamaru-Ogiso E; Kannabiran C; Fonseca-Kelly Z; Chakarova C; Audo I; Mackay DS; Zeitz C; Borman AD; Staniszewska M; Shukla R; Palavalli L; Mohand-Said S; Waseem NH; Jalali S; Perin JC; Place E; Ostrovsky J; Xiao R; Bhattacharya SS; Consugar M; Webster AR; Sahel JA; Moore AT; Berson EL; Liu Q; Gai X; Pierce EA
    Nat Genet; 2012 Sep; 44(9):1040-5. PubMed ID: 22842227
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Homozygous Variant in ARL3 Causes Autosomal Recessive Cone Rod Dystrophy.
    Sheikh SA; Sisk RA; Schiavon CR; Waryah YM; Usmani MA; Steel DH; Sayer JA; Narsani AK; Hufnagel RB; Riazuddin S; Kahn RA; Waryah AM; Ahmed ZM
    Invest Ophthalmol Vis Sci; 2019 Nov; 60(14):4811-4819. PubMed ID: 31743939
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New Insights on the Genetic Basis Underlying SHILCA Syndrome: Characterization of the
    Abad-Morales V; Wert A; Ruiz Gómez MÁ; Navarro R; Pomares E
    Int J Mol Sci; 2021 Feb; 22(5):. PubMed ID: 33668384
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.