BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

548 related articles for article (PubMed ID: 29184400)

  • 21. Characterization of multicellular breast tumor spheroids using image data-driven biophysical mathematical modeling.
    Bowers HJ; Fannin EE; Thomas A; Weis JA
    Sci Rep; 2020 Jul; 10(1):11583. PubMed ID: 32665565
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Physical oncology: New targets for nanomedicine.
    Nicolas-Boluda A; Silva AKA; Fournel S; Gazeau F
    Biomaterials; 2018 Jan; 150():87-99. PubMed ID: 29035739
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Rapid generation of homogenous tumor spheroid microtissues in a scaffold-free platform for high-throughput screening of a novel combination nanomedicine.
    Abolhassani H; Zaer M; Shojaosadati SA; Hashemi-Najafabadi S
    PLoS One; 2023; 18(2):e0282064. PubMed ID: 36800370
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Kinetics of Nanomedicine in Tumor Spheroid as an
    Roy SM; Garg V; Barman S; Ghosh C; Maity AR; Ghosh SK
    Front Bioeng Biotechnol; 2021; 9():785937. PubMed ID: 34926430
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Role of integrated cancer nanomedicine in overcoming drug resistance.
    Iyer AK; Singh A; Ganta S; Amiji MM
    Adv Drug Deliv Rev; 2013 Nov; 65(13-14):1784-802. PubMed ID: 23880506
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nanodrug Delivery: Is the Enhanced Permeability and Retention Effect Sufficient for Curing Cancer?
    Nakamura Y; Mochida A; Choyke PL; Kobayashi H
    Bioconjug Chem; 2016 Oct; 27(10):2225-2238. PubMed ID: 27547843
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nanomedicine: the promise and challenges in cancer chemotherapy.
    Naguib YW; Cui Z
    Adv Exp Med Biol; 2014; 811():207-33. PubMed ID: 24683034
    [No Abstract]   [Full Text] [Related]  

  • 28. Nanoparticle approaches to combating drug resistance.
    Moon JH; Moxley JW; Zhang P; Cui H
    Future Med Chem; 2015 Aug; 7(12):1503-10. PubMed ID: 26334205
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nanomedicine for targeted cancer therapy: towards the overcoming of drug resistance.
    Shapira A; Livney YD; Broxterman HJ; Assaraf YG
    Drug Resist Updat; 2011 Jun; 14(3):150-63. PubMed ID: 21330184
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Real-time viability and apoptosis kinetic detection method of 3D multicellular tumor spheroids using the Celigo Image Cytometer.
    Kessel S; Cribbes S; Bonasu S; Rice W; Qiu J; Chan LL
    Cytometry A; 2017 Sep; 91(9):883-892. PubMed ID: 28618188
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A novel 3D breast-cancer-on-chip platform for therapeutic evaluation of drug delivery systems.
    Chen Y; Gao D; Wang Y; Lin S; Jiang Y
    Anal Chim Acta; 2018 Dec; 1036():97-106. PubMed ID: 30253842
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Three-dimensional and co-culture models for preclinical evaluation of metal-based anticancer drugs.
    Schreiber-Brynzak E; Klapproth E; Unger C; Lichtscheidl-Schultz I; Göschl S; Schweighofer S; Trondl R; Dolznig H; Jakupec MA; Keppler BK
    Invest New Drugs; 2015 Aug; 33(4):835-47. PubMed ID: 26091914
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The use of 3-D cultures for high-throughput screening: the multicellular spheroid model.
    Kunz-Schughart LA; Freyer JP; Hofstaedter F; Ebner R
    J Biomol Screen; 2004 Jun; 9(4):273-85. PubMed ID: 15191644
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Extracellular stability of nanoparticulate drug carriers.
    Liu KC; Yeo Y
    Arch Pharm Res; 2014 Jan; 37(1):16-23. PubMed ID: 24214175
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enhanced permeability and retention (EPR) effect for anticancer nanomedicine drug targeting.
    Greish K
    Methods Mol Biol; 2010; 624():25-37. PubMed ID: 20217587
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comparison of Tumor Penetration of Podophyllotoxin-Carboxymethylcellulose Conjugates with Various Chemical Compositions in Tumor Spheroid Culture and In Vivo Solid Tumor.
    Yang Y; Roy A; Zhao Y; Undzys E; Li SD
    Bioconjug Chem; 2017 May; 28(5):1505-1518. PubMed ID: 28437080
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Influence of size, crosslinking degree and surface structure of poly(N-vinylcaprolactam)-based microgels on their penetration into multicellular tumor spheroids.
    Zhang C; Gau E; Sun W; Zhu J; Schmidt BM; Pich A; Shi X
    Biomater Sci; 2019 Nov; 7(11):4738-4747. PubMed ID: 31502601
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Anticancer nanomedicine and tumor vascular permeability; Where is the missing link?
    Taurin S; Nehoff H; Greish K
    J Control Release; 2012 Dec; 164(3):265-75. PubMed ID: 22800576
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Anticancer drug delivery with nanoparticles.
    Conti M; Tazzari V; Baccini C; Pertici G; Serino LP; De Giorgi U
    In Vivo; 2006; 20(6A):697-701. PubMed ID: 17203748
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The EPR effect and beyond: Strategies to improve tumor targeting and cancer nanomedicine treatment efficacy.
    Shi Y; van der Meel R; Chen X; Lammers T
    Theranostics; 2020; 10(17):7921-7924. PubMed ID: 32685029
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 28.