These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

75 related articles for article (PubMed ID: 29185336)

  • 1. Fluoropolymer-Based Flexible Neural Prosthetic Electrodes for Reliable Neural Interfacing.
    Kim YH; Park J; Koo H; Kim MS; Jung SD
    ACS Appl Mater Interfaces; 2017 Dec; 9(50):43420-43428. PubMed ID: 29185336
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Micro Electrode Arrays Fabrication Using Flexible Perfluoroalkoxy Alkane Films
    Kim JS; Jang KH; Ahn SH; Seo JM
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():4350-4353. PubMed ID: 31946831
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flexible and Highly Biocompatible Nanofiber-Based Electrodes for Neural Surface Interfacing.
    Heo DN; Kim HJ; Lee YJ; Heo M; Lee SJ; Lee D; Do SH; Lee SH; Kwon IK
    ACS Nano; 2017 Mar; 11(3):2961-2971. PubMed ID: 28196320
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication of a photo-crosslinkable fluoropolymer-passivated flexible neural probe and acute recording and stimulation performances in vivo.
    Kim YH; Koo H; Kim MS; Jung SD
    Biomater Adv; 2023 Nov; 154():213629. PubMed ID: 37742557
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polymer nanofiber network reinforced gold electrode array for neural activity recording.
    Yang S; Xu K; Guan S; Zou L; Gao L; Wang J; Tian H; Li H; Fang Y; Li H
    Biomed Eng Lett; 2023 May; 13(2):111-118. PubMed ID: 37124105
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simultaneous photoadhesion and photopatterning technique for passivation of flexible neural electrodes based on fluoropolymers.
    Kim YH; Jung SD
    Sci Rep; 2020 Dec; 10(1):21386. PubMed ID: 33288811
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrode modifications to lower electrode impedance and improve neural signal recording sensitivity.
    Chung T; Wang JQ; Wang J; Cao B; Li Y; Pang SW
    J Neural Eng; 2015 Oct; 12(5):056018. PubMed ID: 26394650
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PDMS based multielectrode arrays for superior in-vitro retinal stimulation and recording.
    Biswas S; Sikdar D; Das D; Mahadevappa M; Das S
    Biomed Microdevices; 2017 Aug; 19(4):75. PubMed ID: 28842772
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integration of High-Charge-Injection-Capacity Electrodes onto Polymer Softening Neural Interfaces.
    Arreaga-Salas DE; Avendaño-Bolívar A; Simon D; Reit R; Garcia-Sandoval A; Rennaker RL; Voit W
    ACS Appl Mater Interfaces; 2015 Dec; 7(48):26614-23. PubMed ID: 26575084
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The fabrication of low-impedance nanoporous gold multiple-electrode arrays for neural electrophysiology studies.
    Seker E; Berdichevsky Y; Begley MR; Reed ML; Staley KJ; Yarmush ML
    Nanotechnology; 2010 Mar; 21(12):125504. PubMed ID: 20203356
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regenerative scaffold electrodes for peripheral nerve interfacing.
    Clements IP; Mukhatyar VJ; Srinivasan A; Bentley JT; Andreasen DS; Bellamkonda RV
    IEEE Trans Neural Syst Rehabil Eng; 2013 Jul; 21(4):554-66. PubMed ID: 23033438
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A feasible way for the fabrication of single walled carbon nanotube/polypyrrole composite film with controlled pore size for neural interface.
    Xiao H; Zhang M; Xiao Y; Che J
    Colloids Surf B Biointerfaces; 2015 Feb; 126():138-45. PubMed ID: 25546836
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A self-assembled lysinated perylene diimide film as a multifunctional material for neural interfacing.
    Bonetti S; Prosa M; Pistone A; Favaretto L; Sagnella A; Grisin I; Zambianchi M; Karges S; Lorenzoni A; Posati T; Zamboni R; Camaioni N; Mercuri F; Muccini M; Melucci M; Benfenati V
    J Mater Chem B; 2016 May; 4(17):2921-2932. PubMed ID: 32262970
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro extracellular recording and stimulation performance of nanoporous gold-modified multi-electrode arrays.
    Kim YH; Kim GH; Kim AY; Han YH; Chung MA; Jung SD
    J Neural Eng; 2015 Dec; 12(6):066029. PubMed ID: 26595188
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigation of using Cyclic Olefin Copolymer as Neural Electrode.
    Baek C; Seo JM
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():5129-5132. PubMed ID: 31947013
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microfabrication, characterization and in vivo MRI compatibility of diamond microelectrodes array for neural interfacing.
    Hébert C; Warnking J; Depaulis A; Garçon LA; Mermoux M; Eon D; Mailley P; Omnès F
    Mater Sci Eng C Mater Biol Appl; 2015 Jan; 46():25-31. PubMed ID: 25491956
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Microelectrode Array with Reproducible Performance Shows Loss of Consistency Following Functionalization with a Self-Assembled 6-Mercapto-1-hexanol Layer.
    Corrigan DK; Vezza V; Schulze H; Bachmann TT; Mount AR; Walton AJ; Terry JG
    Sensors (Basel); 2018 Jun; 18(6):. PubMed ID: 29890722
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct electrochemistry of Phanerochaete chrysosporium cellobiose dehydrogenase covalently attached onto gold nanoparticle modified solid gold electrodes.
    Matsumura H; Ortiz R; Ludwig R; Igarashi K; Samejima M; Gorton L
    Langmuir; 2012 Jul; 28(29):10925-33. PubMed ID: 22746277
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Implantable Graphene-based Neural Electrode Interfaces for Electrophysiology and Neurochemistry in In Vivo Hyperacute Stroke Model.
    Liu TC; Chuang MC; Chu CY; Huang WC; Lai HY; Wang CT; Chu WL; Chen SY; Chen YY
    ACS Appl Mater Interfaces; 2016 Jan; 8(1):187-96. PubMed ID: 26653098
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.