These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 29185458)

  • 41. Insights into the H2/CH4 Separation Through Two-Dimensional Graphene Channels: Influence of Edge Functionalization.
    Xu J; Sang P; Xing W; Shi Z; Zhao L; Guo W; Yan Z
    Nanoscale Res Lett; 2015 Dec; 10(1):492. PubMed ID: 26698875
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Selective Etching of Graphene Membrane Nanopores: From Molecular Sieving to Extreme Permeance.
    Schlichting KP; Poulikakos D
    ACS Appl Mater Interfaces; 2020 Aug; 12(32):36468-36477. PubMed ID: 32805790
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Water-Gas Shift Reaction to Capture Carbon Dioxide and Separate Hydrogen on Single-Walled Carbon Nanotubes.
    Peng X; Vicent-Luna JM; Jin Q
    ACS Appl Mater Interfaces; 2021 Mar; 13(9):11026-11038. PubMed ID: 33630584
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effective Approach for Increasing the Heteroatom Doping Levels of Porous Carbons for Superior CO
    Abdelmoaty YH; Tessema TD; Norouzi N; El-Kadri OM; Turner JBM; El-Kaderi HM
    ACS Appl Mater Interfaces; 2017 Oct; 9(41):35802-35810. PubMed ID: 28956436
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Separation Properties of Porous MoS
    Li Y; Linghu Y; Wu C
    ACS Appl Mater Interfaces; 2020 Apr; 12(17):20096-20102. PubMed ID: 32267680
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Mechanisms of molecular permeation through nanoporous graphene membranes.
    Sun C; Boutilier MS; Au H; Poesio P; Bai B; Karnik R; Hadjiconstantinou NG
    Langmuir; 2014 Jan; 30(2):675-82. PubMed ID: 24364726
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The thinnest molecular separation sheet by graphene gates of single-walled carbon nanohorns.
    Ohba T
    ACS Nano; 2014 Nov; 8(11):11313-9. PubMed ID: 25347389
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Separation selectivity and structural flexibility of graphene-like 2-dimensional membranes.
    Zhang L; Wu C; Ding X; Fang Y; Sun J
    Phys Chem Chem Phys; 2018 Jul; 20(27):18192-18199. PubMed ID: 29741541
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Crystallization of gas-selective nanoporous graphene by competitive etching and growth: a modeling study.
    Dutta S; Vahdat MT; Rezaei M; Agrawal KV
    Sci Rep; 2019 Mar; 9(1):5202. PubMed ID: 30914744
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Highly Selective Zeolite Topologies for Flue Gas Separation.
    Gómez-Álvarez P; Calero S
    Chemistry; 2016 Dec; 22(52):18705-18708. PubMed ID: 27782341
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Tunable phenol remediation from wastewater using SWCNT-based, sub-nanometer porous membranes: reactive molecular dynamics simulations and DFT calculations.
    Moradi F; Ganji MD; Sarrafi Y
    Phys Chem Chem Phys; 2017 Mar; 19(12):8388-8399. PubMed ID: 28282089
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Poly(ionic liquid)/Ionic Liquid Ion-Gels with High "Free" Ionic Liquid Content: Platform Membrane Materials for CO2/Light Gas Separations.
    Cowan MG; Gin DL; Noble RD
    Acc Chem Res; 2016 Apr; 49(4):724-32. PubMed ID: 27046045
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Etching gas-sieving nanopores in single-layer graphene with an angstrom precision for high-performance gas mixture separation.
    Zhao J; He G; Huang S; Villalobos LF; Dakhchoune M; Bassas H; Agrawal KV
    Sci Adv; 2019 Jan; 5(1):eaav1851. PubMed ID: 30746475
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Cross-Linked Polyphosphazene Blends as Robust CO
    Kusuma VA; McNally JS; Baker JS; Tong Z; Zhu L; Orme CJ; Stewart FF; Hopkinson DP
    ACS Appl Mater Interfaces; 2020 Jul; 12(27):30787-30795. PubMed ID: 32531150
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Selectivity and self-diffusion of CO2 and H2 in a mixture on a graphite surface.
    Trinh TT; Vlugt TJ; Hägg MB; Bedeaux D; Kjelstrup S
    Front Chem; 2013; 1():38. PubMed ID: 24790965
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Graphene-Incorporated Biopolymeric Mixed-Matrix Membrane for Enhanced CO
    Prasad B; Mandal B
    ACS Appl Mater Interfaces; 2018 Aug; 10(33):27810-27820. PubMed ID: 30059202
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Theoretical Prediction of Hydrogen Separation Performance of Two-Dimensional Carbon Network of Fused Pentagon.
    Zhu L; Xue Q; Li X; Jin Y; Zheng H; Wu T; Guo Q
    ACS Appl Mater Interfaces; 2015 Dec; 7(51):28502-7. PubMed ID: 26632974
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Cage-Like Porous Materials with Simultaneous High C
    Di Z; Liu C; Pang J; Chen C; Hu F; Yuan D; Wu M; Hong M
    Angew Chem Int Ed Engl; 2021 May; 60(19):10828-10832. PubMed ID: 33619845
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Electrostatically Driven Selective Adsorption of Carbon Dioxide over Acetylene in an Ultramicroporous Material.
    Xie Y; Cui H; Wu H; Lin RB; Zhou W; Chen B
    Angew Chem Int Ed Engl; 2021 Apr; 60(17):9604-9609. PubMed ID: 33524215
    [TBL] [Abstract][Full Text] [Related]  

  • 60. High-performance multilayer composite membranes with mussel-inspired polydopamine as a versatile molecular bridge for CO2 separation.
    Li P; Wang Z; Li W; Liu Y; Wang J; Wang S
    ACS Appl Mater Interfaces; 2015 Jul; 7(28):15481-93. PubMed ID: 26121208
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.