These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
80 related articles for article (PubMed ID: 29185504)
1. Adaptive evolution by spontaneous domain fusion and protein relocalization. Farr AD; Remigi P; Rainey PB Nat Ecol Evol; 2017 Oct; 1(10):1562-1568. PubMed ID: 29185504 [TBL] [Abstract][Full Text] [Related]
2. Adaptive divergence in experimental populations of Pseudomonas fluorescens. IV. Genetic constraints guide evolutionary trajectories in a parallel adaptive radiation. McDonald MJ; Gehrig SM; Meintjes PL; Zhang XX; Rainey PB Genetics; 2009 Nov; 183(3):1041-53. PubMed ID: 19704015 [TBL] [Abstract][Full Text] [Related]
3. The structure-function relationship of WspR, a Pseudomonas fluorescens response regulator with a GGDEF output domain. Malone JG; Williams R; Christen M; Jenal U; Spiers AJ; Rainey PB Microbiology (Reading); 2007 Apr; 153(Pt 4):980-994. PubMed ID: 17379708 [TBL] [Abstract][Full Text] [Related]
4. The Inhibitory Site of a Diguanylate Cyclase Is a Necessary Element for Interaction and Signaling with an Effector Protein. Dahlstrom KM; Giglio KM; Sondermann H; O'Toole GA J Bacteriol; 2016 Jun; 198(11):1595-603. PubMed ID: 27002135 [TBL] [Abstract][Full Text] [Related]
5. Adaptive divergence in experimental populations of Pseudomonas fluorescens. III. Mutational origins of wrinkly spreader diversity. Bantinaki E; Kassen R; Knight CG; Robinson Z; Spiers AJ; Rainey PB Genetics; 2007 May; 176(1):441-53. PubMed ID: 17339222 [TBL] [Abstract][Full Text] [Related]
7. Causes and Biophysical Consequences of Cellulose Production by Pseudomonas fluorescens SBW25 at the Air-Liquid Interface. Ardré M; Dufour D; Rainey PB J Bacteriol; 2019 Sep; 201(18):. PubMed ID: 31085696 [TBL] [Abstract][Full Text] [Related]
8. Altered Regulation of the Diguanylate Cyclase YaiC Reduces Production of Type 1 Fimbriae in a Pst Mutant of Uropathogenic Escherichia coli CFT073. Crépin S; Porcheron G; Houle S; Harel J; Dozois CM J Bacteriol; 2017 Dec; 199(24):. PubMed ID: 28924030 [TBL] [Abstract][Full Text] [Related]
9. Adaptive divergence in experimental populations of Pseudomonas fluorescens. I. Genetic and phenotypic bases of wrinkly spreader fitness. Spiers AJ; Kahn SG; Bohannon J; Travisano M; Rainey PB Genetics; 2002 May; 161(1):33-46. PubMed ID: 12019221 [TBL] [Abstract][Full Text] [Related]
10. Adaptive synonymous mutations in an experimentally evolved Pseudomonas fluorescens population. Bailey SF; Hinz A; Kassen R Nat Commun; 2014 Jun; 5():4076. PubMed ID: 24912567 [TBL] [Abstract][Full Text] [Related]
11. Adaptive radiation of Pseudomonas fluorescens SBW25 in experimental microcosms provides an understanding of the evolutionary ecology and molecular biology of A-L interface biofilm formation. Koza A; Kusmierska A; McLaughlin K; Moshynets O; Spiers AJ FEMS Microbiol Lett; 2017 Jul; 364(12):. PubMed ID: 28535292 [TBL] [Abstract][Full Text] [Related]
13. Adaptive divergence in experimental populations of Pseudomonas fluorescens. II. Role of the GGDEF regulator WspR in evolution and development of the wrinkly spreader phenotype. Goymer P; Kahn SG; Malone JG; Gehrig SM; Spiers AJ; Rainey PB Genetics; 2006 Jun; 173(2):515-26. PubMed ID: 16624907 [TBL] [Abstract][Full Text] [Related]
14. The evolution of biofilm-forming Wrinkly Spreaders in static microcosms and drip-fed columns selects for subtle differences in wrinkleality and fitness. Udall YC; Deeni Y; Hapca SM; Raikes D; Spiers AJ FEMS Microbiol Ecol; 2015 Jun; 91(6):. PubMed ID: 26002784 [TBL] [Abstract][Full Text] [Related]
15. Adaptive divergence in experimental populations of Pseudomonas fluorescens. V. Insight into the niche specialist fuzzy spreader compels revision of the model Pseudomonas radiation. Ferguson GC; Bertels F; Rainey PB Genetics; 2013 Dec; 195(4):1319-35. PubMed ID: 24077305 [TBL] [Abstract][Full Text] [Related]
16. C-di-GMP Synthesis: Structural Aspects of Evolution, Catalysis and Regulation. Schirmer T J Mol Biol; 2016 Sep; 428(19):3683-701. PubMed ID: 27498163 [TBL] [Abstract][Full Text] [Related]
17. Oxygen and Bis(3',5')-cyclic Dimeric Guanosine Monophosphate Binding Control Oligomerization State Equilibria of Diguanylate Cyclase-Containing Globin Coupled Sensors. Burns JL; Rivera S; Deer DD; Joynt SC; Dvorak D; Weinert EE Biochemistry; 2016 Dec; 55(48):6642-6651. PubMed ID: 27933792 [TBL] [Abstract][Full Text] [Related]
18. The importance of conserved amino acids in heme-based globin-coupled diguanylate cyclases. Wan X; Saito JA; Newhouse JS; Hou S; Alam M PLoS One; 2017; 12(8):e0182782. PubMed ID: 28792538 [TBL] [Abstract][Full Text] [Related]
19. Efficient enzymatic production of the bacterial second messenger c-di-GMP by the diguanylate cyclase YdeH from E. coli. Zähringer F; Massa C; Schirmer T Appl Biochem Biotechnol; 2011 Jan; 163(1):71-9. PubMed ID: 20582742 [TBL] [Abstract][Full Text] [Related]
20. A multi-repeat adhesin of the phytopathogen, Pectobacterium atrosepticum, is secreted by a Type I pathway and is subject to complex regulation involving a non-canonical diguanylate cyclase. Pérez-Mendoza D; Coulthurst SJ; Humphris S; Campbell E; Welch M; Toth IK; Salmond GP Mol Microbiol; 2011 Nov; 82(3):719-33. PubMed ID: 21992096 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]