BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 29185576)

  • 1. In situ/operando characterization techniques for rechargeable lithium-sulfur batteries: a review.
    Tan J; Liu D; Xu X; Mai L
    Nanoscale; 2017 Dec; 9(48):19001-19016. PubMed ID: 29185576
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In Operando X-ray diffraction and transmission X-ray microscopy of lithium sulfur batteries.
    Nelson J; Misra S; Yang Y; Jackson A; Liu Y; Wang H; Dai H; Andrews JC; Cui Y; Toney MF
    J Am Chem Soc; 2012 Apr; 134(14):6337-43. PubMed ID: 22432568
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recent Advances in Hollow Porous Carbon Materials for Lithium-Sulfur Batteries.
    Fu A; Wang C; Pei F; Cui J; Fang X; Zheng N
    Small; 2019 Mar; 15(10):e1804786. PubMed ID: 30721557
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Challenges and prospects of lithium-sulfur batteries.
    Manthiram A; Fu Y; Su YS
    Acc Chem Res; 2013 May; 46(5):1125-34. PubMed ID: 23095063
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional Organosulfide Electrolyte Promotes an Alternate Reaction Pathway to Achieve High Performance in Lithium-Sulfur Batteries.
    Chen S; Dai F; Gordin ML; Yu Z; Gao Y; Song J; Wang D
    Angew Chem Int Ed Engl; 2016 Mar; 55(13):4231-5. PubMed ID: 26918660
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lithium-sulfur batteries: electrochemistry, materials, and prospects.
    Yin YX; Xin S; Guo YG; Wan LJ
    Angew Chem Int Ed Engl; 2013 Dec; 52(50):13186-200. PubMed ID: 24243546
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mesoporous TiO2 Nanocrystals/Graphene as an Efficient Sulfur Host Material for High-Performance Lithium-Sulfur Batteries.
    Li Y; Cai Q; Wang L; Li Q; Peng X; Gao B; Huo K; Chu PK
    ACS Appl Mater Interfaces; 2016 Sep; 8(36):23784-92. PubMed ID: 27552961
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Understanding the degradation mechanism of rechargeable lithium/sulfur cells: a comprehensive study of the sulfur-graphene oxide cathode after discharge-charge cycling.
    Feng X; Song MK; Stolte WC; Gardenghi D; Zhang D; Sun X; Zhu J; Cairns EJ; Guo J
    Phys Chem Chem Phys; 2014 Aug; 16(32):16931-40. PubMed ID: 24781200
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In situ optical spectroscopy characterization for optimal design of lithium-sulfur batteries.
    Zhang L; Qian T; Zhu X; Hu Z; Wang M; Zhang L; Jiang T; Tian JH; Yan C
    Chem Soc Rev; 2019 Nov; 48(22):5432-5453. PubMed ID: 31647083
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activated Li2S as a High-Performance Cathode for Rechargeable Lithium-Sulfur Batteries.
    Zu C; Klein M; Manthiram A
    J Phys Chem Lett; 2014 Nov; 5(22):3986-91. PubMed ID: 26276482
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Insight into sulfur reactions in Li-S batteries.
    Xu R; Belharouak I; Zhang X; Chamoun R; Yu C; Ren Y; Nie A; Shahbazian-Yassar R; Lu J; Li JC; Amine K
    ACS Appl Mater Interfaces; 2014 Dec; 6(24):21938-45. PubMed ID: 25425055
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Review of Recent Development of In Situ/Operando Characterization Techniques for Lithium Battery Research.
    Liu D; Shadike Z; Lin R; Qian K; Li H; Li K; Wang S; Yu Q; Liu M; Ganapathy S; Qin X; Yang QH; Wagemaker M; Kang F; Yang XQ; Li B
    Adv Mater; 2019 Jul; 31(28):e1806620. PubMed ID: 31099081
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-capacity micrometer-sized Li2S particles as cathode materials for advanced rechargeable lithium-ion batteries.
    Yang Y; Zheng G; Misra S; Nelson J; Toney MF; Cui Y
    J Am Chem Soc; 2012 Sep; 134(37):15387-94. PubMed ID: 22909273
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Insights into the solvation chemistry in liquid electrolytes for lithium-based rechargeable batteries.
    Xiao P; Yun X; Chen Y; Guo X; Gao P; Zhou G; Zheng C
    Chem Soc Rev; 2023 Jul; 52(15):5255-5316. PubMed ID: 37462967
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Revealing the Electrochemical Charging Mechanism of Nanosized Li
    Zhang L; Sun D; Feng J; Cairns EJ; Guo J
    Nano Lett; 2017 Aug; 17(8):5084-5091. PubMed ID: 28731713
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dithiothreitol-assisted polysulfide reduction in the interlayer of lithium-sulfur batteries: a first-principles study.
    Liu J; Li M; Zhang X; Zhang Q; Yan J; Wu Y
    Phys Chem Chem Phys; 2019 Jul; 21(30):16435-16443. PubMed ID: 31086879
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiscale characterization of a lithium/sulfur battery by coupling operando X-ray tomography and spatially-resolved diffraction.
    Tonin G; Vaughan G; Bouchet R; Alloin F; Di Michiel M; Boutafa L; Colin JF; Barchasz C
    Sci Rep; 2017 Jun; 7(1):2755. PubMed ID: 28584237
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Following the transient reactions in lithium-sulfur batteries using an in situ nuclear magnetic resonance technique.
    Xiao J; Hu JZ; Chen H; Vijayakumar M; Zheng J; Pan H; Walter ED; Hu M; Deng X; Feng J; Liaw BY; Gu M; Deng ZD; Lu D; Xu S; Wang C; Liu J
    Nano Lett; 2015 May; 15(5):3309-16. PubMed ID: 25785550
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A review of flexible lithium-sulfur and analogous alkali metal-chalcogen rechargeable batteries.
    Peng HJ; Huang JQ; Zhang Q
    Chem Soc Rev; 2017 Aug; 46(17):5237-5288. PubMed ID: 28783188
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evolution of Electrochemical Cell Designs for In-Situ and Operando 3D Characterization.
    Tan C; Daemi SR; Taiwo OO; Heenan TMM; Brett DJL; Shearing PR
    Materials (Basel); 2018 Nov; 11(11):. PubMed ID: 30388856
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.