These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
374 related articles for article (PubMed ID: 29185667)
1. Aboveground biomass mapping of African forest mosaics using canopy texture analysis: toward a regional approach. Bastin JF; Barbier N; Couteron P; Adams B; Shapiro A; Bogaert J; De Cannière C Ecol Appl; 2014; 24(8):1984-2001. PubMed ID: 29185667 [TBL] [Abstract][Full Text] [Related]
2. Assessing aboveground tropical forest biomass using Google Earth canopy images. Ploton P; Pélissier R; Proisy C; Flavenot T; Barbier N; Rai SN; Couteron P Ecol Appl; 2012 Apr; 22(3):993-1003. PubMed ID: 22645827 [TBL] [Abstract][Full Text] [Related]
3. Forest degradation and biomass loss along the Chocó region of Colombia. Meyer V; Saatchi S; Ferraz A; Xu L; Duque A; García M; Chave J Carbon Balance Manag; 2019 Mar; 14(1):2. PubMed ID: 30904964 [TBL] [Abstract][Full Text] [Related]
4. Integration of high-resolution optical and SAR satellite remote sensing datasets for aboveground biomass estimation in subtropical pine forest, Pakistan. Akhtar AM; Qazi WA; Ahmad SR; Gilani H; Mahmood SA; Rasool A Environ Monit Assess; 2020 Aug; 192(9):584. PubMed ID: 32808098 [TBL] [Abstract][Full Text] [Related]
6. Characterizing forest structure variations across an intact tropical peat dome using field samplings and airborne LiDAR. Nguyen HT; Hutyra LR; Hardiman BS; Raciti SM Ecol Appl; 2016 Mar; 26(2):587-601. PubMed ID: 27209797 [TBL] [Abstract][Full Text] [Related]
7. Combining remote sensing imagery and forest age inventory for biomass mapping. Zheng G; Chen JM; Tian QJ; Ju WM; Xia XQ J Environ Manage; 2007 Nov; 85(3):616-23. PubMed ID: 17134821 [TBL] [Abstract][Full Text] [Related]
8. Current remote sensing approaches to monitoring forest degradation in support of countries measurement, reporting and verification (MRV) systems for REDD. Mitchell AL; Rosenqvist A; Mora B Carbon Balance Manag; 2017 Dec; 12(1):9. PubMed ID: 28417324 [TBL] [Abstract][Full Text] [Related]
10. Improving aboveground biomass maps of tropical dry forests by integrating LiDAR, ALOS PALSAR, climate and field data. Hernández-Stefanoni JL; Castillo-Santiago MÁ; Mas JF; Wheeler CE; Andres-Mauricio J; Tun-Dzul F; George-Chacón SP; Reyes-Palomeque G; Castellanos-Basto B; Vaca R; Dupuy JM Carbon Balance Manag; 2020 Jul; 15(1):15. PubMed ID: 32729000 [TBL] [Abstract][Full Text] [Related]
11. Evaluating spatial coverage of data on the aboveground biomass in undisturbed forests in the Brazilian Amazon. Tejada G; Görgens EB; Espírito-Santo FDB; Cantinho RZ; Ometto JP Carbon Balance Manag; 2019 Sep; 14(1):11. PubMed ID: 31482475 [TBL] [Abstract][Full Text] [Related]
12. Top Canopy Height and Stem Size Variation Enhance Aboveground Biomass across Spatial Scales in Seasonal Tropical Forests. Sun Z; Sonsuthi A; Jucker T; Ali A; Cao M; Liu F; Cao G; Hu T; Ma Q; Guo Q; Lin L Plants (Basel); 2023 Mar; 12(6):. PubMed ID: 36987031 [TBL] [Abstract][Full Text] [Related]
13. Forest biomass estimation using remote sensing and field inventory: a case study of Tripura, India. Pandey PC; Srivastava PK; Chetri T; Choudhary BK; Kumar P Environ Monit Assess; 2019 Aug; 191(9):593. PubMed ID: 31456055 [TBL] [Abstract][Full Text] [Related]
14. Amazonian landscapes and the bias in field studies of forest structure and biomass. Marvin DC; Asner GP; Knapp DE; Anderson CB; Martin RE; Sinca F; Tupayachi R Proc Natl Acad Sci U S A; 2014 Dec; 111(48):E5224-32. PubMed ID: 25422434 [TBL] [Abstract][Full Text] [Related]
15. Incorporating Canopy Cover for Airborne-Derived Assessments of Forest Biomass in the Tropical Forests of Cambodia. Singh M; Evans D; Coomes DA; Friess DA; Suy Tan B; Samean Nin C PLoS One; 2016; 11(5):e0154307. PubMed ID: 27176218 [TBL] [Abstract][Full Text] [Related]
16. Forest biomass variation in Southernmost Brazil: the impact of Araucaria trees. Rosenfield MF; Souza AF Rev Biol Trop; 2014 Mar; 62(1):359-72. PubMed ID: 24912365 [TBL] [Abstract][Full Text] [Related]
17. Spatial Structure of Above-Ground Biomass Limits Accuracy of Carbon Mapping in Rainforest but Large Scale Forest Inventories Can Help to Overcome. Guitet S; Hérault B; Molto Q; Brunaux O; Couteron P PLoS One; 2015; 10(9):e0138456. PubMed ID: 26402522 [TBL] [Abstract][Full Text] [Related]
18. Predicting spatial variations of tree species richness in tropical forests from high-resolution remote sensing. Fricker GA; Wolf JA; Saatchi SS; Gillespie TW Ecol Appl; 2015 Oct; 25(7):1776-89. PubMed ID: 26591445 [TBL] [Abstract][Full Text] [Related]
19. Long-term annual estimation of forest above ground biomass, canopy cover, and height from airborne and spaceborne sensors synergies in the Iberian Peninsula. Tanase MA; Mihai MC; Miguel S; Cantero A; Tijerin J; Ruiz-Benito P; Domingo D; Garcia-Martin A; Aponte C; Lamelas MT Environ Res; 2024 Oct; 259():119432. PubMed ID: 38944104 [TBL] [Abstract][Full Text] [Related]
20. Natural vegetation biomass and the dimension of forest quality in tropical agricultural landscapes. de Toledo RM; Pivello VR; Perring MP; Verdade LM Ecol Appl; 2024 Apr; 34(3):e2950. PubMed ID: 38404050 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]