These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 29185740)

  • 1. Single-Molecule Fluorescence Reveals Commonalities and Distinctions among Natural and in Vitro-Selected RNA Tertiary Motifs in a Multistep Folding Pathway.
    Bonilla S; Limouse C; Bisaria N; Gebala M; Mabuchi H; Herschlag D
    J Am Chem Soc; 2017 Dec; 139(51):18576-18589. PubMed ID: 29185740
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-throughput dissection of the thermodynamic and conformational properties of a ubiquitous class of RNA tertiary contact motifs.
    Bonilla SL; Denny SK; Shin JH; Alvarez-Buylla A; Greenleaf WJ; Herschlag D
    Proc Natl Acad Sci U S A; 2021 Aug; 118(33):. PubMed ID: 34373334
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetic and thermodynamic framework for P4-P6 RNA reveals tertiary motif modularity and modulation of the folding preferred pathway.
    Bisaria N; Greenfeld M; Limouse C; Pavlichin DS; Mabuchi H; Herschlag D
    Proc Natl Acad Sci U S A; 2016 Aug; 113(34):E4956-65. PubMed ID: 27493222
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An RNA folding motif: GNRA tetraloop-receptor interactions.
    Fiore JL; Nesbitt DJ
    Q Rev Biophys; 2013 Aug; 46(3):223-64. PubMed ID: 23915736
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative tests of a reconstitution model for RNA folding thermodynamics and kinetics.
    Bisaria N; Greenfeld M; Limouse C; Mabuchi H; Herschlag D
    Proc Natl Acad Sci U S A; 2017 Sep; 114(37):E7688-E7696. PubMed ID: 28839094
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Probing the kinetic and thermodynamic consequences of the tetraloop/tetraloop receptor monovalent ion-binding site in P4-P6 RNA by smFRET.
    Bisaria N; Herschlag D
    Biochem Soc Trans; 2015 Apr; 43(2):172-8. PubMed ID: 25849913
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The GAAA tetraloop-receptor interaction contributes differentially to folding thermodynamics and kinetics for the P4-P6 RNA domain.
    Young BT; Silverman SK
    Biochemistry; 2002 Oct; 41(41):12271-6. PubMed ID: 12369814
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The molecular interactions that stabilize RNA tertiary structure: RNA motifs, patterns, and networks.
    Butcher SE; Pyle AM
    Acc Chem Res; 2011 Dec; 44(12):1302-11. PubMed ID: 21899297
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dissecting the energetic architecture within an RNA tertiary structural motif via high-throughput thermodynamic measurements.
    Shin JH; Bonilla SL; Denny SK; Greenleaf WJ; Herschlag D
    Proc Natl Acad Sci U S A; 2023 Mar; 120(11):e2220485120. PubMed ID: 36897989
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enthalpy-driven RNA folding: single-molecule thermodynamics of tetraloop-receptor tertiary interaction.
    Fiore JL; Kraemer B; Koberling F; Edmann R; Nesbitt DJ
    Biochemistry; 2009 Mar; 48(11):2550-8. PubMed ID: 19186984
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Amino Acid Specific Effects on RNA Tertiary Interactions: Single-Molecule Kinetic and Thermodynamic Studies.
    Sengupta A; Sung HL; Nesbitt DJ
    J Phys Chem B; 2016 Oct; 120(41):10615-10627. PubMed ID: 27718572
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-Throughput Investigation of Diverse Junction Elements in RNA Tertiary Folding.
    Denny SK; Bisaria N; Yesselman JD; Das R; Herschlag D; Greenleaf WJ
    Cell; 2018 Jul; 174(2):377-390.e20. PubMed ID: 29961580
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tests of Kramers' Theory at the Single-Molecule Level: Evidence for Folding of an Isolated RNA Tertiary Interaction at the Viscous Speed Limit.
    Dupuis NF; Holmstrom ED; Nesbitt DJ
    J Phys Chem B; 2018 Sep; 122(38):8796-8804. PubMed ID: 30078323
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metal ion dependence, thermodynamics, and kinetics for intramolecular docking of a GAAA tetraloop and receptor connected by a flexible linker.
    Downey CD; Fiore JL; Stoddard CD; Hodak JH; Nesbitt DJ; Pardi A
    Biochemistry; 2006 Mar; 45(11):3664-73. PubMed ID: 16533049
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Do conformational biases of simple helical junctions influence RNA folding stability and specificity?
    Chu VB; Lipfert J; Bai Y; Pande VS; Doniach S; Herschlag D
    RNA; 2009 Dec; 15(12):2195-205. PubMed ID: 19850914
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploring the electrostatic energy landscape for tetraloop-receptor docking.
    He Z; Zhu Y; Chen SJ
    Phys Chem Chem Phys; 2014 Apr; 16(14):6367-75. PubMed ID: 24322001
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of counterion valence and size in GAAA tetraloop-receptor docking/undocking kinetics.
    Fiore JL; Holmstrom ED; Fiegland LR; Hodak JH; Nesbitt DJ
    J Mol Biol; 2012 Oct; 423(2):198-216. PubMed ID: 22796627
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The dynamic nature of RNA as key to understanding riboswitch mechanisms.
    Haller A; Soulière MF; Micura R
    Acc Chem Res; 2011 Dec; 44(12):1339-48. PubMed ID: 21678902
    [TBL] [Abstract][Full Text] [Related]  

  • 19. From static to dynamic: the need for structural ensembles and a predictive model of RNA folding and function.
    Herschlag D; Allred BE; Gowrishankar S
    Curr Opin Struct Biol; 2015 Feb; 30():125-133. PubMed ID: 25744941
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The linkage between magnesium binding and RNA folding.
    Misra VK; Draper DE
    J Mol Biol; 2002 Apr; 317(4):507-21. PubMed ID: 11955006
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.