These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 29186001)

  • 1. Dynamic electron-ion collisions and nuclear quantum effects in quantum simulation of warm dense matter.
    Kang D; Dai J
    J Phys Condens Matter; 2018 Feb; 30(7):073002. PubMed ID: 29186001
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unified first principles description from warm dense matter to ideal ionized gas plasma: electron-ion collisions induced friction.
    Dai J; Hou Y; Yuan J
    Phys Rev Lett; 2010 Jun; 104(24):245001. PubMed ID: 20867307
    [TBL] [Abstract][Full Text] [Related]  

  • 3. First-principles opacity table of warm dense deuterium for inertial-confinement-fusion applications.
    Hu SX; Collins LA; Goncharov VN; Boehly TR; Epstein R; McCrory RL; Skupsky S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):033111. PubMed ID: 25314551
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pair-distribution functions of two-temperature two-mass systems: comparison of molecular dynamics, classical-map hypernetted chain, quantum Monte Carlo, and Kohn-Sham calculations for dense hydrogen.
    Dharma-wardana MW; Murillo MS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Feb; 77(2 Pt 2):026401. PubMed ID: 18352127
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Benchmarking the effective one-component plasma model for warm dense neon and krypton within quantum molecular dynamics simulation.
    Wang ZQ; Tang J; Hou Y; Chen QF; Chen XR; Dai JY; Meng XJ; Gu YJ; Liu L; Li GJ; Lan YS; Li ZG
    Phys Rev E; 2020 Feb; 101(2-1):023302. PubMed ID: 32168678
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ion potential in warm dense matter: wake effects due to streaming degenerate electrons.
    Moldabekov Z; Ludwig P; Bonitz M; Ramazanov T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):023102. PubMed ID: 25768613
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetic theory molecular dynamics and hot dense matter: theoretical foundations.
    Graziani FR; Bauer JD; Murillo MS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):033104. PubMed ID: 25314544
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measurement of charged-particle stopping in warm dense plasma.
    Zylstra AB; Frenje JA; Grabowski PE; Li CK; Collins GW; Fitzsimmons P; Glenzer S; Graziani F; Hansen SB; Hu SX; Johnson MG; Keiter P; Reynolds H; Rygg JR; Séguin FH; Petrasso RD
    Phys Rev Lett; 2015 May; 114(21):215002. PubMed ID: 26066441
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mixed stochastic-deterministic time-dependent density functional theory: application to stopping power of warm dense carbon.
    White AJ; Collins LA; Nichols K; Hu SX
    J Phys Condens Matter; 2022 Feb; 34(17):. PubMed ID: 35081511
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reduced coupled-mode approach to electron-ion energy relaxation.
    Chapman DA; Vorberger J; Gericke DO
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jul; 88(1):013102. PubMed ID: 23944563
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electron-ion and ion-ion potentials for modeling warm dense matter: Applications to laser-heated or shock-compressed Al and Si.
    Dharma-wardana MW
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Sep; 86(3 Pt 2):036407. PubMed ID: 23031034
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generalized x-ray scattering cross section from nonequilibrium plasmas.
    Gregori G; Glenzer SH; Landen OL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Aug; 74(2 Pt 2):026402. PubMed ID: 17025545
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetic model for electron-ion transport in warm dense matter.
    Rightley S; Baalrud SD
    Phys Rev E; 2021 Jun; 103(6-1):063206. PubMed ID: 34271617
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unified description of linear screening in dense plasmas.
    Stanton LG; Murillo MS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Mar; 91(3):033104. PubMed ID: 25871221
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrodynamic theory for ion structure and stopping power in quantum plasmas.
    Shukla PK; Akbari-Moghanjoughi M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Apr; 87(4):043106. PubMed ID: 23679529
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ion dynamics and energy relaxation rate in nonequilibrium electron-ion systems.
    Daligault J; Mozyrsky D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Feb; 75(2 Pt 2):026402. PubMed ID: 17358427
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Visualization of expanding warm dense gold and diamond heated rapidly by laser-generated ion beams.
    Bang W; Albright BJ; Bradley PA; Gautier DC; Palaniyappan S; Vold EL; Santiago Cordoba MA; Hamilton CE; Fernández JC
    Sci Rep; 2015 Sep; 5():14318. PubMed ID: 26392208
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Path integral Monte Carlo simulations of dense carbon-hydrogen plasmas.
    Zhang S; Militzer B; Benedict LX; Soubiran F; Sterne PA; Driver KP
    J Chem Phys; 2018 Mar; 148(10):102318. PubMed ID: 29544329
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integral equation model for warm and hot dense mixtures.
    Starrett CE; Saumon D; Daligault J; Hamel S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):033110. PubMed ID: 25314550
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nonideal mixing effects in warm dense matter studied with first-principles computer simulations.
    Militzer B; González-Cataldo F; Zhang S; Whitley HD; Swift DC; Millot M
    J Chem Phys; 2020 Nov; 153(18):184101. PubMed ID: 33187447
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.