These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 29186172)
1. Geometric calibration of a stationary digital breast tomosynthesis system based on distributed carbon nanotube X-ray source arrays. Jiang C; Zhang N; Gao J; Hu Z PLoS One; 2017; 12(11):e0188367. PubMed ID: 29186172 [TBL] [Abstract][Full Text] [Related]
2. High resolution stationary digital breast tomosynthesis using distributed carbon nanotube x-ray source array. Qian X; Tucker A; Gidcumb E; Shan J; Yang G; Calderon-Colon X; Sultana S; Lu J; Zhou O; Spronk D; Sprenger F; Zhang Y; Kennedy D; Farbizio T; Jing Z Med Phys; 2012 Apr; 39(4):2090-9. PubMed ID: 22482630 [TBL] [Abstract][Full Text] [Related]
3. Initial Clinical Experience with Stationary Digital Breast Tomosynthesis. Lee YZ; Puett C; Inscoe CR; Jia B; Kim C; Walsh R; Yoon S; Kim SJ; Kuzmiak CM; Zeng D; Lu J; Zhou O Acad Radiol; 2019 Oct; 26(10):1363-1372. PubMed ID: 30660473 [TBL] [Abstract][Full Text] [Related]
4. Evaluation of reconstruction algorithms for a stationary digital breast tomosynthesis system using a carbon nanotube X-ray source array. Hu Z; Chen Z; Zhou C; Hong X; Chen J; Zhang Q; Jiang C; Ge Y; Yang Y; Liu X; Zheng H; Li Z; Liang D J Xray Sci Technol; 2020; 28(6):1157-1169. PubMed ID: 32925159 [TBL] [Abstract][Full Text] [Related]
5. Visualizing microcalcifications in lumpectomy specimens: an exploration into the clinical potential of carbon nanotube-enabled Puett C; Gao J; Tucker A; Inscoe CR; Hwang M; Kuzmiak CM; Lu J; Zhou O; Lee YZ Biomed Phys Eng Express; 2019 Jul; 5(4):. PubMed ID: 33304617 [TBL] [Abstract][Full Text] [Related]
6. A generic geometric calibration method for tomographic imaging systems with flat-panel detectors--a detailed implementation guide. Li X; Da Z; Liu B Med Phys; 2010 Jul; 37(7):3844-54. PubMed ID: 20831092 [TBL] [Abstract][Full Text] [Related]
7. Design and characterization of a spatially distributed multibeam field emission x-ray source for stationary digital breast tomosynthesis. Qian X; Rajaram R; Calderon-Colon X; Yang G; Phan T; Lalush DS; Lu J; Zhou O Med Phys; 2009 Oct; 36(10):4389-99. PubMed ID: 19928069 [TBL] [Abstract][Full Text] [Related]
8. Importance of point-by-point back projection correction for isocentric motion in digital breast tomosynthesis: relevance to morphology of structures such as microcalcifications. Chen Y; Lo JY; Dobbins JT Med Phys; 2007 Oct; 34(10):3885-92. PubMed ID: 17985634 [TBL] [Abstract][Full Text] [Related]
9. Effect of source blur on digital breast tomosynthesis reconstruction. Zheng J; Fessler JA; Chan HP Med Phys; 2019 Dec; 46(12):5572-5592. PubMed ID: 31494953 [TBL] [Abstract][Full Text] [Related]
10. TU-E-217BCD-11: Evaluating the Performance of a Stationary Digital Breast Tomosynthesis System. Tucker A; Gidcumb E; Shan J; Qian X; Sprenger F; Spronk D; Zhang Y; Kennedy D; Farbizio T; Ruth C; Jing Z; Lu J; Zhou O Med Phys; 2012 Jun; 39(6Part24):3916. PubMed ID: 28518705 [TBL] [Abstract][Full Text] [Related]
11. Multi-beam X-ray source breast tomosynthesis reconstruction with different algorithms. Zhou W; Qian X; Lu J; Zhou O; Chen Y Proc SPIE Int Soc Opt Eng; 2010; 7622():76220H. PubMed ID: 27053823 [TBL] [Abstract][Full Text] [Related]
12. Geometry calibration and image reconstruction for carbon-nanotube-based multisource and multidetector CT. Moon S; Choi S; Jang H; Shin M; Roh Y; Baek J Phys Med Biol; 2021 Aug; 66(16):. PubMed ID: 34289459 [TBL] [Abstract][Full Text] [Related]
13. Distributed source x-ray tube technology for tomosynthesis imaging. Sprenger F; Calderon-Colon X; Cheng Y; Englestad K; Lu J; Maltz J; Paidi A; Qian X; Spronk D; Sultana S; Yang G; Zhou O Proc SPIE Int Soc Opt Eng; 2010 Jan; 7622():76225M. PubMed ID: 21785671 [TBL] [Abstract][Full Text] [Related]
14. Accurate technique for complete geometric calibration of cone-beam computed tomography systems. Cho Y; Moseley DJ; Siewerdsen JH; Jaffray DA Med Phys; 2005 Apr; 32(4):968-83. PubMed ID: 15895580 [TBL] [Abstract][Full Text] [Related]
15. Evaluation of carbon nanotube x-ray source array for stationary head computed tomography. Spronk D; Luo Y; Inscoe CR; Lee YZ; Lu J; Zhou O Med Phys; 2021 Mar; 48(3):1089-1099. PubMed ID: 33382470 [TBL] [Abstract][Full Text] [Related]
16. Characterization and preliminary imaging evaluation of a clinical prototype stationary intraoral tomosynthesis system. Inscoe CR; Platin E; Mauriello SM; Broome A; Mol A; Gaalaas LR; Regan Anderson MW; Puett C; Lu J; Zhou O Med Phys; 2018 Nov; 45(11):5172-5185. PubMed ID: 30259988 [TBL] [Abstract][Full Text] [Related]
17. A geometric calibration method for the digital chest tomosynthesis with dual-axis scanning geometry. Chang CH; Ni YC; Huang SY; Hsieh HH; Tseng SP; Tseng FP PLoS One; 2019; 14(4):e0216054. PubMed ID: 31022255 [TBL] [Abstract][Full Text] [Related]
18. A phantom-based calibration method for digital x-ray tomosynthesis. Miao H; Wu X; Zhao H; Liu H J Xray Sci Technol; 2012; 20(1):17-29. PubMed ID: 22398585 [TBL] [Abstract][Full Text] [Related]
19. Sensitivity analysis of a geometric calibration method using projection matrices for digital tomosynthesis systems. Li X; Da Z; Liu B Med Phys; 2011 Jan; 38(1):202-9. PubMed ID: 21361188 [TBL] [Abstract][Full Text] [Related]
20. Carbon nanotube electron field emitters for x-ray imaging of human breast cancer. Gidcumb E; Gao B; Shan J; Inscoe C; Lu J; Zhou O Nanotechnology; 2014 Jun; 25(24):245704. PubMed ID: 24869902 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]