These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 29186189)
1. Modulation of corticospinal output in agonist and antagonist proximal arm muscles during motor preparation. Neige C; Massé-Alarie H; Gagné M; Bouyer LJ; Mercier C PLoS One; 2017; 12(11):e0188801. PubMed ID: 29186189 [TBL] [Abstract][Full Text] [Related]
2. Effect of movement-related pain on behaviour and corticospinal excitability changes associated with arm movement preparation. Neige C; Mavromatis N; Gagné M; Bouyer LJ; Mercier C J Physiol; 2018 Jul; 596(14):2917-2929. PubMed ID: 29855037 [TBL] [Abstract][Full Text] [Related]
3. Corticospinal excitability to the biceps and triceps brachii during forward and backward arm cycling is direction- and phase-dependent. Nippard AP; Lockyer EJ; Button DC; Power KE Appl Physiol Nutr Metab; 2020 Jan; 45(1):72-80. PubMed ID: 31167082 [TBL] [Abstract][Full Text] [Related]
4. Modulation of transcallosal inhibition by bilateral activation of agonist and antagonist proximal arm muscles. Perez MA; Butler JE; Taylor JL J Neurophysiol; 2014 Jan; 111(2):405-14. PubMed ID: 24155008 [TBL] [Abstract][Full Text] [Related]
5. Corticospinal excitability, assessed through stimulus response curves, is phase-, task-, and muscle-dependent during arm cycling. Forman DA; Monks M; Power KE Neurosci Lett; 2019 Jan; 692():100-106. PubMed ID: 30399398 [TBL] [Abstract][Full Text] [Related]
6. Modulation of Corticospinal Excitability of Trunk Muscles in Preparation of Rapid Arm Movement. Massé-Alarie H; Neige C; Bouyer LJ; Mercier C Neuroscience; 2018 Jan; 369():231-241. PubMed ID: 29174911 [TBL] [Abstract][Full Text] [Related]
7. Elbow angle modulates corticospinal excitability to the resting biceps brachii at both spinal and supraspinal levels. Dongés SC; Taylor JL; Nuzzo JL Exp Physiol; 2019 Apr; 104(4):546-555. PubMed ID: 30690803 [TBL] [Abstract][Full Text] [Related]
8. Intensity matters: effects of cadence and power output on corticospinal excitability during arm cycling are phase and muscle dependent. Lockyer EJ; Benson RJ; Hynes AP; Alcock LR; Spence AJ; Button DC; Power KE J Neurophysiol; 2018 Dec; 120(6):2908-2921. PubMed ID: 30354778 [TBL] [Abstract][Full Text] [Related]
9. Distinct Corticospinal and Reticulospinal Contributions to Voluntary Control of Elbow Flexor and Extensor Muscles in Humans with Tetraplegia. Sangari S; Perez MA J Neurosci; 2020 Nov; 40(46):8831-8841. PubMed ID: 32883710 [TBL] [Abstract][Full Text] [Related]
10. Rapid plasticity of motor corticospinal system with robotic reach training. Kantak SS; Jones-Lush LM; Narayanan P; Judkins TN; Wittenberg GF Neuroscience; 2013 Sep; 247():55-64. PubMed ID: 23669007 [TBL] [Abstract][Full Text] [Related]
11. Changes in corticospinal excitability and the direction of evoked movements during motor preparation: a TMS study. van Elswijk G; Schot WD; Stegeman DF; Overeem S BMC Neurosci; 2008 Jun; 9():51. PubMed ID: 18559096 [TBL] [Abstract][Full Text] [Related]
12. Cadence-dependent changes in corticospinal excitability of the biceps brachii during arm cycling. Forman DA; Philpott DT; Button DC; Power KE J Neurophysiol; 2015 Oct; 114(4):2285-94. PubMed ID: 26289462 [TBL] [Abstract][Full Text] [Related]
13. Corticospinal excitability is enhanced while preparing for complex movements. Kennefick M; Burma JS; van Donkelaar P; McNeil CJ Exp Brain Res; 2019 Mar; 237(3):829-837. PubMed ID: 30610263 [TBL] [Abstract][Full Text] [Related]
14. Crossed corticospinal facilitation between arm and trunk muscles in humans. Chiou SY; Strutton PH; Perez MA J Neurophysiol; 2018 Nov; 120(5):2595-2602. PubMed ID: 29847230 [TBL] [Abstract][Full Text] [Related]
15. Anodal transcranial direct current stimulation enhances time to task failure of a submaximal contraction of elbow flexors without changing corticospinal excitability. Abdelmoula A; Baudry S; Duchateau J Neuroscience; 2016 May; 322():94-103. PubMed ID: 26892298 [TBL] [Abstract][Full Text] [Related]
16. Phase- and Workload-Dependent Changes in Corticospinal Excitability to the Biceps and Triceps Brachii during Arm Cycling. Spence AJ; Alcock LR; Lockyer EJ; Button DC; Power KE Brain Sci; 2016 Dec; 6(4):. PubMed ID: 27983685 [TBL] [Abstract][Full Text] [Related]
17. Corticospinal excitability of the biceps brachii is shoulder position dependent. Collins BW; Cadigan EWJ; Stefanelli L; Button DC J Neurophysiol; 2017 Dec; 118(6):3242-3251. PubMed ID: 28855295 [TBL] [Abstract][Full Text] [Related]
18. Corticospinal excitability of the biceps brachii is higher during arm cycling than an intensity-matched tonic contraction. Forman D; Raj A; Button DC; Power KE J Neurophysiol; 2014 Sep; 112(5):1142-51. PubMed ID: 24899677 [TBL] [Abstract][Full Text] [Related]
19. Suppression of motor evoked potentials in biceps brachii preceding pronator contraction. Gerachshenko T; Stinear JW Exp Brain Res; 2007 Dec; 183(4):531-9. PubMed ID: 17665175 [TBL] [Abstract][Full Text] [Related]
20. Unilateral movement preparation causes task-specific modulation of TMS responses in the passive, opposite limb. Chye L; Riek S; de Rugy A; Carson RG; Carroll TJ J Physiol; 2018 Aug; 596(16):3725-3738. PubMed ID: 29775218 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]