BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 29186220)

  • 1. Self-assembly of water-soluble silver nanoclusters: superstructure formation and morphological evolution.
    Shen J; Wang Z; Sun D; Liu G; Yuan S; Kurmoo M; Xin X
    Nanoscale; 2017 Dec; 9(48):19191-19200. PubMed ID: 29186220
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Amphiphilicity Regulation of Ag
    Shen J; Wang Z; Xia C; Sun D; Yuan S; Xin X
    Chemistry; 2019 Mar; 25(18):4713-4721. PubMed ID: 30653766
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Superstructure Formation and Topological Evolution Achieved by Self-Organization of a Highly Adaptive Dynamer.
    Xing P; Chen H; Bai L; Hao A; Zhao Y
    ACS Nano; 2016 Feb; 10(2):2716-27. PubMed ID: 26757061
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-assembling behaviour of a modified aromatic amino acid in competitive medium.
    Singh P; Misra S; Sepay N; Mondal S; Ray D; Aswal VK; Nanda J
    Soft Matter; 2020 Jul; 16(28):6599-6607. PubMed ID: 32608458
    [TBL] [Abstract][Full Text] [Related]  

  • 5. pH-Responsive Nanovesicles with Enhanced Emission Co-Assembled by Ag(I) Nanoclusters and Polyethyleneimine as a Superior Sensor for Al
    Shen J; Wang Z; Sun D; Xia C; Yuan S; Sun P; Xin X
    ACS Appl Mater Interfaces; 2018 Jan; 10(4):3955-3963. PubMed ID: 29319291
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expanding the solvent chemical space for self-assembly of dipeptide nanostructures.
    Mason TO; Chirgadze DY; Levin A; Adler-Abramovich L; Gazit E; Knowles TP; Buell AK
    ACS Nano; 2014 Feb; 8(2):1243-53. PubMed ID: 24422499
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Solvent Induced Morphological Evolution of Cholesterol Based Glucose Tailored Amphiphiles: Transformation from Vesicles to Nanoribbons.
    Mandal D; Dinda S; Choudhury P; Das PK
    Langmuir; 2016 Sep; 32(38):9780-9. PubMed ID: 27575950
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Macroscopic Supramolecular Assembly through Electrostatic Interactions Based on a Flexible Spacing Coating.
    Zhang Q; Liu C; Ju G; Cheng M; Shi F
    Macromol Rapid Commun; 2018 Oct; 39(20):e1800180. PubMed ID: 29749034
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Supramolecular gel from folic acid with multiple responsiveness, rapid self-recovery and orthogonal self-assemblies.
    Xing P; Chu X; Ma M; Li S; Hao A
    Phys Chem Chem Phys; 2014 May; 16(18):8346-59. PubMed ID: 24658366
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Solvent Effect on Supramolecular Self-Assembly of Chlorophylls a on Chemically Reduced Graphene Oxide.
    Ramakrishna TRB; Mathesh M; Liu Z; Zhang C; Du A; Liu J; Barrow CJ; Chen M; Biggs MJ; Yang W
    Langmuir; 2020 Nov; 36(45):13575-13582. PubMed ID: 33085489
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapid Macroscopic-Scale Assembly of Ag Nanowires at the Water/Air Interface.
    Yan Y; Kim SH; Zhang F; Piao L; Zhou H
    J Nanosci Nanotechnol; 2018 Mar; 18(3):1995-2000. PubMed ID: 29448698
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dipole-Dipole Interaction Driven Self-Assembly of Merocyanine Dyes: From Dimers to Nanoscale Objects and Supramolecular Materials.
    Würthner F
    Acc Chem Res; 2016 May; 49(5):868-76. PubMed ID: 27064423
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic Self-Assembly of Gold/Polymer Nanocomposites: pH-Encoded Switching between 1D Nanowires and 3D Nanosponges.
    Zhang Q; Xu TY; Zhao CX; Jin WH; Wang Q; Qu DH
    Chem Asian J; 2017 Oct; 12(19):2549-2553. PubMed ID: 28810054
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Amphiphilic building blocks for self-assembly: from amphiphiles to supra-amphiphiles.
    Wang C; Wang Z; Zhang X
    Acc Chem Res; 2012 Apr; 45(4):608-18. PubMed ID: 22242811
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanoscale assembly of enantiomeric supramolecular gels driven by the nature of solvents.
    Gudmundsson TA; Kuppadakkath G; Ghosh D; Ruether M; Seddon A; Ginesi RE; Doutch J; Adams DJ; Gunnlaugsson T; Damodaran KK
    Nanoscale; 2024 May; 16(18):8922-8930. PubMed ID: 38591601
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetically Controlled Structural Modulation of the Self-Assembled Silver Nanoclusters.
    Feng N; Wang Z; Sun D; Zhang L; Xin X; Sun P; Azam M; Li H
    Small; 2024 Feb; 20(6):e2305366. PubMed ID: 37792210
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Realizing enhanced luminescence of silver nanocluster-peptide soft hydrogels by PEI reinforcement.
    Xin X; Gao Y; Zhang Q; Wang Z; Sun D; Yuan S; Xia H
    Soft Matter; 2018 Nov; 14(41):8352-8360. PubMed ID: 30303240
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Atomically precise chiral silver clusters based on non-chiral ligands for acid/base stimulated luminescence response.
    Wang S; He W; Cui Y; Zhou Z; Ma L; Zang SQ
    Nanoscale; 2023 Aug; 15(30):12679-12685. PubMed ID: 37466042
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-assembly of short peptides to form hydrogels: design of building blocks, physical properties and technological applications.
    Fichman G; Gazit E
    Acta Biomater; 2014 Apr; 10(4):1671-82. PubMed ID: 23958781
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fullerene Cluster Assisted Self-Assembly of Short DNA Strands into Semiconducting Nanowires.
    Vittala SK; Saraswathi SK; Joseph J
    Chemistry; 2017 Nov; 23(62):15759-15765. PubMed ID: 28858402
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.