These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. A magnetically recyclable photocatalyst with commendable dye degradation activity at ambient conditions. Pant A; Tanwar R; Kaur B; Mandal UK Sci Rep; 2018 Oct; 8(1):14700. PubMed ID: 30279537 [TBL] [Abstract][Full Text] [Related]
5. Photocatalytic degradation of bezacryl yellow in batch reactors--feasibility of the combination of photocatalysis and a biological treatment. Khenniche L; Favier L; Bouzaza A; Fourcade F; Aissani F; Amrane A Environ Technol; 2015; 36(1-4):1-10. PubMed ID: 25409577 [TBL] [Abstract][Full Text] [Related]
6. Bioinspired Synthesis of Photocatalytic Nanocomposite Membranes Based on Synergy of Au-TiO Wang C; Wu Y; Lu J; Zhao J; Cui J; Wu X; Yan Y; Huo P ACS Appl Mater Interfaces; 2017 Jul; 9(28):23687-23697. PubMed ID: 28656749 [TBL] [Abstract][Full Text] [Related]
7. Facile Photochemical Synthesis of Au/Pt/g-C3N4 with Plasmon-Enhanced Photocatalytic Activity for Antibiotic Degradation. Xue J; Ma S; Zhou Y; Zhang Z; He M ACS Appl Mater Interfaces; 2015 May; 7(18):9630-7. PubMed ID: 25891123 [TBL] [Abstract][Full Text] [Related]
8. Construction of CuS/Au Heterostructure through a Simple Photoreduction Route for Enhanced Electrochemical Hydrogen Evolution and Photocatalysis. Basu M; Nazir R; Fageria P; Pande S Sci Rep; 2016 Oct; 6():34738. PubMed ID: 27703212 [TBL] [Abstract][Full Text] [Related]
9. Photocatalytic reduction of triclosan on Au-Cu2O nanowire arrays as plasmonic photocatalysts under visible light irradiation. Niu J; Dai Y; Yin L; Shang J; Crittenden JC Phys Chem Chem Phys; 2015 Jul; 17(26):17421-8. PubMed ID: 26076905 [TBL] [Abstract][Full Text] [Related]
10. Construction of a 0D/1D composite based on Au nanoparticles/CuBi Shi W; Li M; Ren H; Guo F; Huang X; Shi Y; Tang Y Beilstein J Nanotechnol; 2019; 10():1360-1367. PubMed ID: 31355104 [TBL] [Abstract][Full Text] [Related]
11. Improved visible-light activities for degrading pollutants on TiO Zada A; Qu Y; Ali S; Sun N; Lu H; Yan R; Zhang X; Jing L J Hazard Mater; 2018 Jan; 342():715-723. PubMed ID: 28917200 [TBL] [Abstract][Full Text] [Related]
12. Design and application of Au decorated ZnO/TiO Mukhopadhyay S; Maiti D; Chatterjee S; Devi PS; Suresh Kumar G Phys Chem Chem Phys; 2016 Nov; 18(46):31622-31633. PubMed ID: 27834981 [TBL] [Abstract][Full Text] [Related]
13. Photocatalytic degradation of textile dye X3B by heteropolyoxometalate acids. Hu M; Xu Y Chemosphere; 2004 Jan; 54(3):431-4. PubMed ID: 14575757 [TBL] [Abstract][Full Text] [Related]
14. CdS-graphene Nanocomposite for Efficient Visible-light-driven Photocatalytic and Photoelectrochemical Applications. Khan ME; Khan MM; Cho MH J Colloid Interface Sci; 2016 Nov; 482():221-232. PubMed ID: 27505275 [TBL] [Abstract][Full Text] [Related]
15. Fabrication of novel magnetically separable nanocomposites using graphitic carbon nitride, silver phosphate and silver chloride and their applications in photocatalytic removal of different pollutants using visible-light irradiation. Mousavi M; Habibi-Yangjeh A; Abitorabi M J Colloid Interface Sci; 2016 Oct; 480():218-231. PubMed ID: 27442149 [TBL] [Abstract][Full Text] [Related]
16. A metal-organic framework based multifunctional catalytic platform for organic transformation and environmental remediation. Kaur H; Venkateswarulu M; Kumar S; Krishnan V; Koner RR Dalton Trans; 2018 Jan; 47(5):1488-1497. PubMed ID: 29309072 [TBL] [Abstract][Full Text] [Related]
17. Integrating plasmonic nanoparticles with TiO₂ photonic crystal for enhancement of visible-light-driven photocatalysis. Lu Y; Yu H; Chen S; Quan X; Zhao H Environ Sci Technol; 2012 Feb; 46(3):1724-30. PubMed ID: 22224958 [TBL] [Abstract][Full Text] [Related]
18. Titania supported gold nanoparticles as photocatalyst. Primo A; Corma A; García H Phys Chem Chem Phys; 2011 Jan; 13(3):886-910. PubMed ID: 21085723 [TBL] [Abstract][Full Text] [Related]
19. Enhanced photocatalytic-electrolytic degradation of Reactive Brilliant Red X-3B in the presence of water jet cavitation. Wang X; Jia J; Wang Y Ultrason Sonochem; 2015 Mar; 23():93-9. PubMed ID: 25453209 [TBL] [Abstract][Full Text] [Related]
20. In Situ Solid-State Synthesis of a AgNi/g-C Bhandary N; Singh AP; Kumar S; Ingole PP; Thakur GS; Ganguli AK; Basu S ChemSusChem; 2016 Oct; 9(19):2816-2823. PubMed ID: 27628430 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]