BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 29186294)

  • 1. Classifying next-generation sequencing data using a zero-inflated Poisson model.
    Zhou Y; Wan X; Zhang B; Tong T
    Bioinformatics; 2018 Apr; 34(8):1329-1335. PubMed ID: 29186294
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selecting Classification Methods for Small Samples of Next-Generation Sequencing Data.
    Zhu J; Yuan Z; Shu L; Liao W; Zhao M; Zhou Y
    Front Genet; 2021; 12():642227. PubMed ID: 33747051
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NBLDA: negative binomial linear discriminant analysis for RNA-Seq data.
    Dong K; Zhao H; Tong T; Wan X
    BMC Bioinformatics; 2016 Sep; 17(1):369. PubMed ID: 27623864
    [TBL] [Abstract][Full Text] [Related]  

  • 4. scDLC: a deep learning framework to classify large sample single-cell RNA-seq data.
    Zhou Y; Peng M; Yang B; Tong T; Zhang B; Tang N
    BMC Genomics; 2022 Jul; 23(1):504. PubMed ID: 35831808
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Threshold-seq: a tool for determining the threshold in short RNA-seq datasets.
    Magee R; Loher P; Londin E; Rigoutsos I
    Bioinformatics; 2017 Jul; 33(13):2034-2036. PubMed ID: 28203700
    [TBL] [Abstract][Full Text] [Related]  

  • 6. GD-RDA: A New Regularized Discriminant Analysis for High-Dimensional Data.
    Zhou Y; Zhang B; Li G; Tong T; Wan X
    J Comput Biol; 2017 Nov; 24(11):1099-1111. PubMed ID: 28414553
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A flexible count data model to fit the wide diversity of expression profiles arising from extensively replicated RNA-seq experiments.
    Esnaola M; Puig P; Gonzalez D; Castelo R; Gonzalez JR
    BMC Bioinformatics; 2013 Aug; 14():254. PubMed ID: 23965047
    [TBL] [Abstract][Full Text] [Related]  

  • 8. smallWig: parallel compression of RNA-seq WIG files.
    Wang Z; Weissman T; Milenkovic O
    Bioinformatics; 2016 Jan; 32(2):173-80. PubMed ID: 26424856
    [TBL] [Abstract][Full Text] [Related]  

  • 9. piPipes: a set of pipelines for piRNA and transposon analysis via small RNA-seq, RNA-seq, degradome- and CAGE-seq, ChIP-seq and genomic DNA sequencing.
    Han BW; Wang W; Zamore PD; Weng Z
    Bioinformatics; 2015 Feb; 31(4):593-5. PubMed ID: 25342065
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Network analysis for count data with excess zeros.
    Choi H; Gim J; Won S; Kim YJ; Kwon S; Park C
    BMC Genet; 2017 Nov; 18(1):93. PubMed ID: 29110633
    [TBL] [Abstract][Full Text] [Related]  

  • 11. iMir: an integrated pipeline for high-throughput analysis of small non-coding RNA data obtained by smallRNA-Seq.
    Giurato G; De Filippo MR; Rinaldi A; Hashim A; Nassa G; Ravo M; Rizzo F; Tarallo R; Weisz A
    BMC Bioinformatics; 2013 Dec; 14():362. PubMed ID: 24330401
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A zero-inflated Poisson model for insertion tolerance analysis of genes based on Tn-seq data.
    Liu F; Wang C; Wu Z; Zhang Q; Liu P
    Bioinformatics; 2016 Jun; 32(11):1701-8. PubMed ID: 26833344
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SparseIso: a novel Bayesian approach to identify alternatively spliced isoforms from RNA-seq data.
    Shi X; Wang X; Wang TL; Hilakivi-Clarke L; Clarke R; Xuan J
    Bioinformatics; 2018 Jan; 34(1):56-63. PubMed ID: 28968634
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Co-expression analysis of high-throughput transcriptome sequencing data with Poisson mixture models.
    Rau A; Maugis-Rabusseau C; Martin-Magniette ML; Celeux G
    Bioinformatics; 2015 May; 31(9):1420-7. PubMed ID: 25563332
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MLSeq: Machine learning interface for RNA-sequencing data.
    Goksuluk D; Zararsiz G; Korkmaz S; Eldem V; Zararsiz GE; Ozcetin E; Ozturk A; Karaagaoglu AE
    Comput Methods Programs Biomed; 2019 Jul; 175():223-231. PubMed ID: 31104710
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DEsingle for detecting three types of differential expression in single-cell RNA-seq data.
    Miao Z; Deng K; Wang X; Zhang X
    Bioinformatics; 2018 Sep; 34(18):3223-3224. PubMed ID: 29688277
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A heavy-tailed model for analyzing miRNA-seq raw read counts.
    Krutto A; Haugdahl Nøst T; Thoresen M
    Stat Appl Genet Mol Biol; 2024 Jan; 23(1):. PubMed ID: 38810893
    [TBL] [Abstract][Full Text] [Related]  

  • 18. EBSeq-HMM: a Bayesian approach for identifying gene-expression changes in ordered RNA-seq experiments.
    Leng N; Li Y; McIntosh BE; Nguyen BK; Duffin B; Tian S; Thomson JA; Dewey CN; Stewart R; Kendziorski C
    Bioinformatics; 2015 Aug; 31(16):2614-22. PubMed ID: 25847007
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Covariate-dependent negative binomial factor analysis of RNA sequencing data.
    Zamani Dadaneh S; Zhou M; Qian X
    Bioinformatics; 2018 Jul; 34(13):i61-i69. PubMed ID: 29949981
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Powerful differential expression analysis incorporating network topology for next-generation sequencing data.
    Dona MSI; Prendergast LA; Mathivanan S; Keerthikumar S; Salim A
    Bioinformatics; 2017 May; 33(10):1505-1513. PubMed ID: 28172447
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.