These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
297 related articles for article (PubMed ID: 29186323)
1. An attention-based BiLSTM-CRF approach to document-level chemical named entity recognition. Luo L; Yang Z; Yang P; Zhang Y; Wang L; Lin H; Wang J Bioinformatics; 2018 Apr; 34(8):1381-1388. PubMed ID: 29186323 [TBL] [Abstract][Full Text] [Related]
2. Document-level attention-based BiLSTM-CRF incorporating disease dictionary for disease named entity recognition. Xu K; Yang Z; Kang P; Wang Q; Liu W Comput Biol Med; 2019 May; 108():122-132. PubMed ID: 31003175 [TBL] [Abstract][Full Text] [Related]
3. Biomedical named entity recognition using deep neural networks with contextual information. Cho H; Lee H BMC Bioinformatics; 2019 Dec; 20(1):735. PubMed ID: 31881938 [TBL] [Abstract][Full Text] [Related]
4. D3NER: biomedical named entity recognition using CRF-biLSTM improved with fine-tuned embeddings of various linguistic information. Dang TH; Le HQ; Nguyen TM; Vu ST Bioinformatics; 2018 Oct; 34(20):3539-3546. PubMed ID: 29718118 [TBL] [Abstract][Full Text] [Related]
5. LSTMVoter: chemical named entity recognition using a conglomerate of sequence labeling tools. Hemati W; Mehler A J Cheminform; 2019 Jan; 11(1):3. PubMed ID: 30631966 [TBL] [Abstract][Full Text] [Related]
6. Long short-term memory RNN for biomedical named entity recognition. Lyu C; Chen B; Ren Y; Ji D BMC Bioinformatics; 2017 Oct; 18(1):462. PubMed ID: 29084508 [TBL] [Abstract][Full Text] [Related]
7. Disease named entity recognition by combining conditional random fields and bidirectional recurrent neural networks. Wei Q; Chen T; Xu R; He Y; Gui L Database (Oxford); 2016; 2016():. PubMed ID: 27777244 [TBL] [Abstract][Full Text] [Related]
8. DTranNER: biomedical named entity recognition with deep learning-based label-label transition model. Hong SK; Lee JG BMC Bioinformatics; 2020 Feb; 21(1):53. PubMed ID: 32046638 [TBL] [Abstract][Full Text] [Related]
9. Deep learning with word embeddings improves biomedical named entity recognition. Habibi M; Weber L; Neves M; Wiegandt DL; Leser U Bioinformatics; 2017 Jul; 33(14):i37-i48. PubMed ID: 28881963 [TBL] [Abstract][Full Text] [Related]
10. Towards reliable named entity recognition in the biomedical domain. Giorgi JM; Bader GD Bioinformatics; 2020 Jan; 36(1):280-286. PubMed ID: 31218364 [TBL] [Abstract][Full Text] [Related]
11. GRAM-CNN: a deep learning approach with local context for named entity recognition in biomedical text. Zhu Q; Li X; Conesa A; Pereira C Bioinformatics; 2018 May; 34(9):1547-1554. PubMed ID: 29272325 [TBL] [Abstract][Full Text] [Related]
12. Incorporating domain knowledge in chemical and biomedical named entity recognition with word representations. Munkhdalai T; Li M; Batsuren K; Park HA; Choi NH; Ryu KH J Cheminform; 2015; 7(Suppl 1 Text mining for chemistry and the CHEMDNER track):S9. PubMed ID: 25810780 [TBL] [Abstract][Full Text] [Related]
13. Chemical named entity recognition in patents by domain knowledge and unsupervised feature learning. Zhang Y; Xu J; Chen H; Wang J; Wu Y; Prakasam M; Xu H Database (Oxford); 2016; 2016():. PubMed ID: 27087307 [TBL] [Abstract][Full Text] [Related]
14. Disease named entity recognition from biomedical literature using a novel convolutional neural network. Zhao Z; Yang Z; Luo L; Wang L; Zhang Y; Lin H; Wang J BMC Med Genomics; 2017 Dec; 10(Suppl 5):73. PubMed ID: 29297367 [TBL] [Abstract][Full Text] [Related]
15. TaggerOne: joint named entity recognition and normalization with semi-Markov Models. Leaman R; Lu Z Bioinformatics; 2016 Sep; 32(18):2839-46. PubMed ID: 27283952 [TBL] [Abstract][Full Text] [Related]
16. Dataset-aware multi-task learning approaches for biomedical named entity recognition. Zuo M; Zhang Y Bioinformatics; 2020 Aug; 36(15):4331-4338. PubMed ID: 32415963 [TBL] [Abstract][Full Text] [Related]
17. Integrating deep learning architectures for enhanced biomedical relation extraction: a pipeline approach. Sarol MJ; Hong G; Guerra E; Kilicoglu H Database (Oxford); 2024 Aug; 2024():. PubMed ID: 39197056 [TBL] [Abstract][Full Text] [Related]
18. Adversarial active learning for the identification of medical concepts and annotation inconsistency. Yu G; Yang Y; Wang X; Zhen H; He G; Li Z; Zhao Y; Shu Q; Shu L J Biomed Inform; 2020 Aug; 108():103481. PubMed ID: 32687985 [TBL] [Abstract][Full Text] [Related]
19. The CHEMDNER corpus of chemicals and drugs and its annotation principles. Krallinger M; Rabal O; Leitner F; Vazquez M; Salgado D; Lu Z; Leaman R; Lu Y; Ji D; Lowe DM; Sayle RA; Batista-Navarro RT; Rak R; Huber T; Rocktäschel T; Matos S; Campos D; Tang B; Xu H; Munkhdalai T; Ryu KH; Ramanan SV; Nathan S; Žitnik S; Bajec M; Weber L; Irmer M; Akhondi SA; Kors JA; Xu S; An X; Sikdar UK; Ekbal A; Yoshioka M; Dieb TM; Choi M; Verspoor K; Khabsa M; Giles CL; Liu H; Ravikumar KE; Lamurias A; Couto FM; Dai HJ; Tsai RT; Ata C; Can T; Usié A; Alves R; Segura-Bedmar I; Martínez P; Oyarzabal J; Valencia A J Cheminform; 2015; 7(Suppl 1 Text mining for chemistry and the CHEMDNER track):S2. PubMed ID: 25810773 [TBL] [Abstract][Full Text] [Related]
20. An effective neural model extracting document level chemical-induced disease relations from biomedical literature. Zheng W; Lin H; Li Z; Liu X; Li Z; Xu B; Zhang Y; Yang Z; Wang J J Biomed Inform; 2018 Jul; 83():1-9. PubMed ID: 29746916 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]