BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 29186349)

  • 1. GDSCTools for mining pharmacogenomic interactions in cancer.
    Cokelaer T; Chen E; Iorio F; Menden MP; Lightfoot H; Saez-Rodriguez J; Garnett MJ
    Bioinformatics; 2018 Apr; 34(7):1226-1228. PubMed ID: 29186349
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genomics of Drug Sensitivity in Cancer (GDSC): a resource for therapeutic biomarker discovery in cancer cells.
    Yang W; Soares J; Greninger P; Edelman EJ; Lightfoot H; Forbes S; Bindal N; Beare D; Smith JA; Thompson IR; Ramaswamy S; Futreal PA; Haber DA; Stratton MR; Benes C; McDermott U; Garnett MJ
    Nucleic Acids Res; 2013 Jan; 41(Database issue):D955-61. PubMed ID: 23180760
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improved anticancer drug response prediction in cell lines using matrix factorization with similarity regularization.
    Wang L; Li X; Zhang L; Gao Q
    BMC Cancer; 2017 Aug; 17(1):513. PubMed ID: 28768489
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integrating heterogeneous drug sensitivity data from cancer pharmacogenomic studies.
    Pozdeyev N; Yoo M; Mackie R; Schweppe RE; Tan AC; Haugen BR
    Oncotarget; 2016 Aug; 7(32):51619-51625. PubMed ID: 27322211
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimal drug prediction from personal genomics profiles.
    Sheng J; Li F; Wong ST
    IEEE J Biomed Health Inform; 2015 Jul; 19(4):1264-70. PubMed ID: 25781964
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting Cancer Drug Response using a Recommender System.
    Suphavilai C; Bertrand D; Nagarajan N
    Bioinformatics; 2018 Nov; 34(22):3907-3914. PubMed ID: 29868820
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CellMiner Cross-Database (CellMinerCDB) version 1.2: Exploration of patient-derived cancer cell line pharmacogenomics.
    Luna A; Elloumi F; Varma S; Wang Y; Rajapakse VN; Aladjem MI; Robert J; Sander C; Pommier Y; Reinhold WC
    Nucleic Acids Res; 2021 Jan; 49(D1):D1083-D1093. PubMed ID: 33196823
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RWEN: response-weighted elastic net for prediction of chemosensitivity of cancer cell lines.
    Basu A; Mitra R; Liu H; Schreiber SL; Clemons PA
    Bioinformatics; 2018 Oct; 34(19):3332-3339. PubMed ID: 29688307
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Data Mining Approaches for Genomic Biomarker Development: Applications Using Drug Screening Data from the Cancer Genome Project and the Cancer Cell Line Encyclopedia.
    Covell DG
    PLoS One; 2015; 10(7):e0127433. PubMed ID: 26132924
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluating the consistency of large-scale pharmacogenomic studies.
    Rahman R; Dhruba SR; Matlock K; De-Niz C; Ghosh S; Pal R
    Brief Bioinform; 2019 Sep; 20(5):1734-1753. PubMed ID: 31846027
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improved large-scale prediction of growth inhibition patterns using the NCI60 cancer cell line panel.
    Cortés-Ciriano I; van Westen GJ; Bouvier G; Nilges M; Overington JP; Bender A; Malliavin TE
    Bioinformatics; 2016 Jan; 32(1):85-95. PubMed ID: 26351271
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational Analyses Connect Small-Molecule Sensitivity to Cellular Features Using Large Panels of Cancer Cell Lines.
    Rees MG; Seashore-Ludlow B; Clemons PA
    Methods Mol Biol; 2019; 1888():233-254. PubMed ID: 30519951
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DeepDRK: a deep learning framework for drug repurposing through kernel-based multi-omics integration.
    Wang Y; Yang Y; Chen S; Wang J
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33822890
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unearthing new genomic markers of drug response by improved measurement of discriminative power.
    Dang CC; Peón A; Ballester PJ
    BMC Med Genomics; 2018 Feb; 11(1):10. PubMed ID: 29409485
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Systematic identification of feature combinations for predicting drug response with Bayesian multi-view multi-task linear regression.
    Ammad-Ud-Din M; Khan SA; Wennerberg K; Aittokallio T
    Bioinformatics; 2017 Jul; 33(14):i359-i368. PubMed ID: 28881998
    [TBL] [Abstract][Full Text] [Related]  

  • 16. IPCT: Integrated Pharmacogenomic Platform of Human Cancer Cell Lines and Tissues.
    Shoaib M; Ansari AA; Haq F; Ahn SM
    Genes (Basel); 2019 Feb; 10(2):. PubMed ID: 30813377
    [No Abstract]   [Full Text] [Related]  

  • 17. CGV: Cancer Genome Viewer, a web service for integrative cancer genome and pharmacogenomic data analysis.
    Choi JH; Choi HS; Cho SH; Lee JH; Woo HG
    Bioinformatics; 2022 Nov; 38(22):5116-5118. PubMed ID: 36130060
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ensembled machine learning framework for drug sensitivity prediction.
    Sharma A; Rani R
    IET Syst Biol; 2020 Feb; 14(1):39-46. PubMed ID: 31931480
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep-Resp-Forest: A deep forest model to predict anti-cancer drug response.
    Su R; Liu X; Wei L; Zou Q
    Methods; 2019 Aug; 166():91-102. PubMed ID: 30772464
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Q-omics: Smart Software for Assisting Oncology and Cancer Research.
    Lee J; Kim Y; Jin S; Yoo H; Jeong S; Jeong E; Yoon S
    Mol Cells; 2021 Nov; 44(11):843-850. PubMed ID: 34819397
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.