These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
516 related articles for article (PubMed ID: 29186355)
1. Global proteomics profiling improves drug sensitivity prediction: results from a multi-omics, pan-cancer modeling approach. Ali M; Khan SA; Wennerberg K; Aittokallio T Bioinformatics; 2018 Apr; 34(8):1353-1362. PubMed ID: 29186355 [TBL] [Abstract][Full Text] [Related]
2. Proteomic Approaches for Biomarker Panels in Cancer. Tanase C; Albulescu R; Neagu M J Immunoassay Immunochem; 2016; 37(1):1-15. PubMed ID: 26565430 [TBL] [Abstract][Full Text] [Related]
3. Topological integration of RPPA proteomic data with multi-omics data for survival prediction in breast cancer via pathway activity inference. Kim TR; Jeong HH; Sohn KA BMC Med Genomics; 2019 Jul; 12(Suppl 5):94. PubMed ID: 31296204 [TBL] [Abstract][Full Text] [Related]
4. Modeling gene-wise dependencies improves the identification of drug response biomarkers in cancer studies. Nikolova O; Moser R; Kemp C; Gönen M; Margolin AA Bioinformatics; 2017 May; 33(9):1362-1369. PubMed ID: 28082455 [TBL] [Abstract][Full Text] [Related]
5. Evaluation of reverse phase protein array (RPPA)-based pathway-activation profiling in 84 non-small cell lung cancer (NSCLC) cell lines as platform for cancer proteomics and biomarker discovery. Ummanni R; Mannsperger HA; Sonntag J; Oswald M; Sharma AK; König R; Korf U Biochim Biophys Acta; 2014 May; 1844(5):950-9. PubMed ID: 24361481 [TBL] [Abstract][Full Text] [Related]
6. LinkedOmics: analyzing multi-omics data within and across 32 cancer types. Vasaikar SV; Straub P; Wang J; Zhang B Nucleic Acids Res; 2018 Jan; 46(D1):D956-D963. PubMed ID: 29136207 [TBL] [Abstract][Full Text] [Related]
7. The molecular make-up of a tumour: proteomics in cancer research. Kolch W; Mischak H; Pitt AR Clin Sci (Lond); 2005 May; 108(5):369-83. PubMed ID: 15831087 [TBL] [Abstract][Full Text] [Related]
8. Systematic identification of feature combinations for predicting drug response with Bayesian multi-view multi-task linear regression. Ammad-Ud-Din M; Khan SA; Wennerberg K; Aittokallio T Bioinformatics; 2017 Jul; 33(14):i359-i368. PubMed ID: 28881998 [TBL] [Abstract][Full Text] [Related]
9. Feature set optimization in biomarker discovery from genome-scale data. Fortino V; Scala G; Greco D Bioinformatics; 2020 Jun; 36(11):3393-3400. PubMed ID: 32119073 [TBL] [Abstract][Full Text] [Related]
10. DeepCDR: a hybrid graph convolutional network for predicting cancer drug response. Liu Q; Hu Z; Jiang R; Zhou M Bioinformatics; 2020 Dec; 36(Suppl_2):i911-i918. PubMed ID: 33381841 [TBL] [Abstract][Full Text] [Related]
11. Identifying subpathway signatures for individualized anticancer drug response by integrating multi-omics data. Xu Y; Dong Q; Li F; Xu Y; Hu C; Wang J; Shang D; Zheng X; Yang H; Zhang C; Shao M; Meng M; Xiong Z; Li X; Zhang Y J Transl Med; 2019 Aug; 17(1):255. PubMed ID: 31387579 [TBL] [Abstract][Full Text] [Related]
12. Predicting cancer drug response by proteomic profiling. Ma Y; Ding Z; Qian Y; Shi X; Castranova V; Harner EJ; Guo L Clin Cancer Res; 2006 Aug; 12(15):4583-9. PubMed ID: 16899605 [TBL] [Abstract][Full Text] [Related]
13. Mass spectrometry-based proteomics: from cancer biology to protein biomarkers, drug targets, and clinical applications. Jimenez CR; Verheul HM Am Soc Clin Oncol Educ Book; 2014; ():e504-10. PubMed ID: 24857147 [TBL] [Abstract][Full Text] [Related]
14. RWEN: response-weighted elastic net for prediction of chemosensitivity of cancer cell lines. Basu A; Mitra R; Liu H; Schreiber SL; Clemons PA Bioinformatics; 2018 Oct; 34(19):3332-3339. PubMed ID: 29688307 [TBL] [Abstract][Full Text] [Related]
15. Using reverse-phase protein arrays as pharmacodynamic assays for functional proteomics, biomarker discovery, and drug development in cancer. Lu Y; Ling S; Hegde AM; Byers LA; Coombes K; Mills GB; Akbani R Semin Oncol; 2016 Aug; 43(4):476-83. PubMed ID: 27663479 [TBL] [Abstract][Full Text] [Related]
16. Integrative analysis of multi-platform reverse-phase protein array data for the pharmacodynamic assessment of response to targeted therapies. Byron A; Bernhardt S; Ouine B; Cartier A; Macleod KG; Carragher NO; Sibut V; Korf U; Serrels B; de Koning L Sci Rep; 2020 Dec; 10(1):21985. PubMed ID: 33319783 [TBL] [Abstract][Full Text] [Related]
17. Global MS-Based Proteomics Drug Profiling. Carvalho AS; Matthiesen R Methods Mol Biol; 2016; 1449():469-79. PubMed ID: 27613057 [TBL] [Abstract][Full Text] [Related]
18. Qupe--a Rich Internet Application to take a step forward in the analysis of mass spectrometry-based quantitative proteomics experiments. Albaum SP; Neuweger H; Fränzel B; Lange S; Mertens D; Trötschel C; Wolters D; Kalinowski J; Nattkemper TW; Goesmann A Bioinformatics; 2009 Dec; 25(23):3128-34. PubMed ID: 19808875 [TBL] [Abstract][Full Text] [Related]
19. Proteomic profiling predicts drug response to novel targeted anticancer therapeutics. Lin F; Li Z; Hua Y; Lim YP Expert Rev Proteomics; 2016; 13(4):411-20. PubMed ID: 26954459 [TBL] [Abstract][Full Text] [Related]