BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

515 related articles for article (PubMed ID: 29186355)

  • 21. Signaling pathway profiling by reverse-phase protein array for personalized cancer medicine.
    Masuda M; Yamada T
    Biochim Biophys Acta; 2015 Jun; 1854(6):651-7. PubMed ID: 25448010
    [TBL] [Abstract][Full Text] [Related]  

  • 22. MOLI: multi-omics late integration with deep neural networks for drug response prediction.
    Sharifi-Noghabi H; Zolotareva O; Collins CC; Ester M
    Bioinformatics; 2019 Jul; 35(14):i501-i509. PubMed ID: 31510700
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cancer Cell Line Panels Empower Genomics-Based Discovery of Precision Cancer Medicine.
    Kim HS; Sung YJ; Paik S
    Yonsei Med J; 2015 Sep; 56(5):1186-98. PubMed ID: 26256959
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Emerging Affinity-Based Proteomic Technologies for Large-Scale Plasma Profiling in Cardiovascular Disease.
    Smith JG; Gerszten RE
    Circulation; 2017 Apr; 135(17):1651-1664. PubMed ID: 28438806
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Harnessing the power of proteomics for identification of oncogenic, druggable signalling pathways in cancer.
    Murray HC; Dun MD; Verrills NM
    Expert Opin Drug Discov; 2017 May; 12(5):431-447. PubMed ID: 28286965
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Two-step multi-omics modelling of drug sensitivity in cancer cell lines to identify driving mechanisms.
    Kusch N; Schuppert A
    PLoS One; 2020; 15(11):e0238961. PubMed ID: 33226984
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Reverse phase protein arrays in signaling pathways: a data integration perspective.
    Creighton CJ; Huang S
    Drug Des Devel Ther; 2015; 9():3519-27. PubMed ID: 26185419
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Introduction: Cancer Gene Networks.
    Clarke R
    Methods Mol Biol; 2017; 1513():1-9. PubMed ID: 27807826
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A Linear Mixed Model Spline Framework for Analysing Time Course 'Omics' Data.
    Straube J; Gorse AD; ; Huang BE; Lê Cao KA
    PLoS One; 2015; 10(8):e0134540. PubMed ID: 26313144
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mass spectrometry-based clinical proteomics: head-and-neck cancer biomarkers and drug-targets discovery.
    Matta A; Ralhan R; DeSouza LV; Siu KW
    Mass Spectrom Rev; 2010; 29(6):945-61. PubMed ID: 20945361
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Application of quantitative proteomic analysis for cancer therapy using "reverse-phase" protein lysate microarrays].
    Nishizuka S; Spurrier B; Honkanen P; Austin J; Wakabayashi G
    Gan To Kagaku Ryoho; 2008 Feb; 35(2):200-5. PubMed ID: 18281757
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The prediction of drug sensitivity by multi-omics fusion reveals the heterogeneity of drug response in pan-cancer.
    Wang C; Zhang M; Zhao J; Li B; Xiao X; Zhang Y
    Comput Biol Med; 2023 Sep; 163():107220. PubMed ID: 37406589
    [TBL] [Abstract][Full Text] [Related]  

  • 33. DeepDRK: a deep learning framework for drug repurposing through kernel-based multi-omics integration.
    Wang Y; Yang Y; Chen S; Wang J
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33822890
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Drug response prediction model using a hierarchical structural component modeling method.
    Kim S; Choi S; Yoon JH; Kim Y; Lee S; Park T
    BMC Bioinformatics; 2018 Aug; 19(Suppl 9):288. PubMed ID: 30367591
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Strategies for kinome profiling in cancer and potential clinical applications: chemical proteomics and array-based methods.
    Piersma SR; Labots M; Verheul HM; Jiménez CR
    Anal Bioanal Chem; 2010 Aug; 397(8):3163-71. PubMed ID: 20526883
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The ongoing evolution of proteomics in malignancy.
    Dhamoon AS; Kohn EC; Azad NS
    Drug Discov Today; 2007 Sep; 12(17-18):700-8. PubMed ID: 17826682
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Protein fingerprints of anti-cancer effects of cyclin-dependent kinase inhibition: identification of candidate biomarkers using 2-D liquid phase separation coupled to mass spectrometry.
    Skalnikova H; Halada P; Dzubak P; Hajduch M; Kovarova H
    Technol Cancer Res Treat; 2005 Aug; 4(4):447-54. PubMed ID: 16029063
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A Multi-Method Approach for Proteomic Network Inference in 11 Human Cancers.
    Şenbabaoğlu Y; Sümer SO; Sánchez-Vega F; Bemis D; Ciriello G; Schultz N; Sander C
    PLoS Comput Biol; 2016 Feb; 12(2):e1004765. PubMed ID: 26928298
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Systematic analysis of genotype-specific drug responses in cancer.
    Kim N; He N; Kim C; Zhang F; Lu Y; Yu Q; Stemke-Hale K; Greshock J; Wooster R; Yoon S; Mills GB
    Int J Cancer; 2012 Nov; 131(10):2456-64. PubMed ID: 22422301
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Perseus: A Bioinformatics Platform for Integrative Analysis of Proteomics Data in Cancer Research.
    Tyanova S; Cox J
    Methods Mol Biol; 2018; 1711():133-148. PubMed ID: 29344888
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 26.