These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 29186839)

  • 21. Simply and cost-effectively fabricated AuNP-based fusion spliced transmissive optical fiber LSPR probes.
    Liu T; Ding H; Zhan C; Huang J; Wang S
    Opt Express; 2021 Mar; 29(5):7398-7409. PubMed ID: 33726241
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Aggregation-Driven Controllable Plasmonic Transition of Silica-Coated Gold Nanoparticles with Temperature-Dependent Polymer-Nanoparticle Interactions for Potential Applications in Optoelectronic Devices.
    Kwon NK; Lee TK; Kwak SK; Kim SY
    ACS Appl Mater Interfaces; 2017 Nov; 9(45):39688-39698. PubMed ID: 29053247
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ellipsometric advances for local surface plasmon resonance to determine chitosan adsorption on layer-by-layer gold nanoparticles.
    Su YH; Teoh LG; Lai WH; Chang SH; Yang HC; Hon MH
    Appl Spectrosc; 2007 Sep; 61(9):1007-14. PubMed ID: 17910799
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Tapered optical fiber sensor based on localized surface plasmon resonance.
    Lin HY; Huang CH; Cheng GL; Chen NK; Chui HC
    Opt Express; 2012 Sep; 20(19):21693-701. PubMed ID: 23037288
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An enhanced LSPR fiber-optic nanoprobe for ultrasensitive detection of protein biomarkers.
    Sanders M; Lin Y; Wei J; Bono T; Lindquist RG
    Biosens Bioelectron; 2014 Nov; 61():95-101. PubMed ID: 24858997
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Interaction of plasmon and molecular resonances for rhodamine 6G adsorbed on silver nanoparticles.
    Zhao J; Jensen L; Sung J; Zou S; Schatz GC; Duyne RP
    J Am Chem Soc; 2007 Jun; 129(24):7647-56. PubMed ID: 17521187
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Measuring agglomerate size distribution and dependence of localized surface plasmon resonance absorbance on gold nanoparticle agglomerate size using analytical ultracentrifugation.
    Zook JM; Rastogi V; Maccuspie RI; Keene AM; Fagan J
    ACS Nano; 2011 Oct; 5(10):8070-9. PubMed ID: 21888410
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Surface plasmon resonance based fiber optic trichloroacetic acid sensor utilizing layer of silver nanoparticles and chitosan doped hydrogel.
    Semwal V; Shrivastav AM; Gupta BD
    Nanotechnology; 2017 Feb; 28(6):065503. PubMed ID: 28059062
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Differential phase-detecting localized surface plasmon resonance sensor with self-assembly gold nano-islands.
    Qiu G; Ng SP; Wu CM
    Opt Lett; 2015 May; 40(9):1924-7. PubMed ID: 25927749
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Solid-phase colorimetric sensing probe for bromide based on a tough hydrogel embedded with silver nanoprisms.
    Kim SH; Woo HC; Kim MH
    Anal Chim Acta; 2020 Sep; 1131():80-89. PubMed ID: 32928482
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Insight into the localized surface plasmon resonance property of core-satellite nanostructures: Theoretical prediction and experimental validation.
    Song D; Jing D
    J Colloid Interface Sci; 2017 Nov; 505():373-382. PubMed ID: 28601746
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Analysis of the evolution of tannic Acid stabilized gold nanoparticles using mie theory.
    Senoudi AR; Chabane Sari SM; Hakem IF
    Int J Anal Chem; 2014; 2014():832657. PubMed ID: 25525433
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An aptamer based wall-less LSPR array chip for label-free and high throughput detection of biomolecules.
    Xie L; Yan X; Du Y
    Biosens Bioelectron; 2014 Mar; 53():58-64. PubMed ID: 24121209
    [TBL] [Abstract][Full Text] [Related]  

  • 34. SiO(2) /TiO(2) hollow nanoparticles decorated with Ag nanoparticles: enhanced visible light absorption and improved light scattering in dye-sensitized solar cells.
    Hwang SH; Shin DH; Yun J; Kim C; Choi M; Jang J
    Chemistry; 2014 Apr; 20(15):4439-46. PubMed ID: 24591121
    [TBL] [Abstract][Full Text] [Related]  

  • 35. LSPR properties of metal nanoparticles adsorbed at a liquid-liquid interface.
    Yang Z; Chen S; Fang P; Ren B; Girault HH; Tian Z
    Phys Chem Chem Phys; 2013 Apr; 15(15):5374-8. PubMed ID: 23376970
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fabrication of core-shell structured nanoparticle layer substrate for excitation of localized surface plasmon resonance and its optical response for DNA in aqueous conditions.
    Endo T; Ikeda D; Kawakami Y; Yanagida Y; Hatsuzawa T
    Anal Chim Acta; 2010 Feb; 661(2):200-5. PubMed ID: 20113736
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Plasmon resonances of Ag capped Si nanopillars fabricated using mask-less lithography.
    Wu K; Rindzevicius T; Schmidt MS; Mogensen KB; Xiao S; Boisen A
    Opt Express; 2015 May; 23(10):12965-78. PubMed ID: 26074549
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Backward-scattering-based Localized Surface Plasmon Resonance Sensors with Gold Nanospheres and Nanoshells.
    Kawawaki T; Shinjo N; Tatsuma T
    Anal Sci; 2016; 32(3):271-4. PubMed ID: 26960604
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Emerging use of nanostructure films containing capped gold nanoparticles in biosensors.
    Satija J; Bharadwaj R; Sai V; Mukherji S
    Nanotechnol Sci Appl; 2010 Dec; 3():171-88. PubMed ID: 24198481
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Localized surface plasmon resonance spectroscopy and sensing.
    Willets KA; Van Duyne RP
    Annu Rev Phys Chem; 2007; 58():267-97. PubMed ID: 17067281
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.