These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 29186932)

  • 1. Ionic Substitutions in Non-Apatitic Calcium Phosphates.
    Laskus A; Kolmas J
    Int J Mol Sci; 2017 Nov; 18(12):. PubMed ID: 29186932
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ionic substitutions in calcium phosphates synthesized at low temperature.
    Boanini E; Gazzano M; Bigi A
    Acta Biomater; 2010 Jun; 6(6):1882-94. PubMed ID: 20040384
    [TBL] [Abstract][Full Text] [Related]  

  • 3. α-Tricalcium phosphate: synthesis, properties and biomedical applications.
    Carrodeguas RG; De Aza S
    Acta Biomater; 2011 Oct; 7(10):3536-46. PubMed ID: 21712105
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanostructured calcium phosphates for biomedical applications: novel synthesis and characterization.
    Kumta PN; Sfeir C; Lee DH; Olton D; Choi D
    Acta Biomater; 2005 Jan; 1(1):65-83. PubMed ID: 16701781
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Petal-like apatite formed on the surface of tricalcium phosphate ceramic after soaking in distilled water.
    Lin FH; Liao CJ; Chen KS; Su JS; Lin CP
    Biomaterials; 2001 Nov; 22(22):2981-92. PubMed ID: 11575472
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanical and Biocompatibility Properties of Calcium Phosphate Bioceramics Derived from Salmon Fish Bone Wastes.
    Bas M; Daglilar S; Kuskonmaz N; Kalkandelen C; Erdemir G; Kuruca SE; Tulyaganov D; Yoshioka T; Gunduz O; Ficai D; Ficai A
    Int J Mol Sci; 2020 Oct; 21(21):. PubMed ID: 33138182
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Solid state 31NMR studies of the conversion of amorphous tricalcium phosphate to apatitic tricalcium phosphate.
    Roberts JE; Heughebaert M; Heughebaert JC; Bonar LC; Glimcher MJ; Griffin RG
    Calcif Tissue Int; 1991 Dec; 49(6):378-82. PubMed ID: 1818761
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Silicon substitution in the calcium phosphate bioceramics.
    Pietak AM; Reid JW; Stott MJ; Sayer M
    Biomaterials; 2007 Oct; 28(28):4023-32. PubMed ID: 17544500
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Review paper: behavior of ceramic biomaterials derived from tricalcium phosphate in physiological condition.
    Kamitakahara M; Ohtsuki C; Miyazaki T
    J Biomater Appl; 2008 Nov; 23(3):197-212. PubMed ID: 18996965
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of strontium on the synthesis and surface properties of biphasic calcium phosphate (BCP) bioceramics.
    Kanchana P; Sekar C
    J Appl Biomater Biomech; 2010; 8(3):153-8. PubMed ID: 21337306
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel highly biodegradable biphasic tricalcium phosphates composed of alpha-tricalcium phosphate and beta-tricalcium phosphate.
    Li Y; Weng W; Tam KC
    Acta Biomater; 2007 Mar; 3(2):251-4. PubMed ID: 16979393
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An in vitro evaluation of the Ca/P ratio for the cytocompatibility of nano-to-micron particulate calcium phosphates for bone regeneration.
    Liu H; Yazici H; Ergun C; Webster TJ; Bermek H
    Acta Biomater; 2008 Sep; 4(5):1472-9. PubMed ID: 18394980
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Understanding of dopant-induced osteogenesis and angiogenesis in calcium phosphate ceramics.
    Bose S; Fielding G; Tarafder S; Bandyopadhyay A
    Trends Biotechnol; 2013 Oct; 31(10):594-605. PubMed ID: 24012308
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The improved biological response of shark tooth bioapatites in a comparative in vitro study with synthetic and bovine bone grafts.
    López-Álvarez M; Pérez-Davila S; Rodríguez-Valencia C; González P; Serra J
    Biomed Mater; 2016 Jun; 11(3):035011. PubMed ID: 27271863
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of Mg(2+) doping on beta-alpha phase transition in tricalcium phosphate (TCP) bioceramics.
    Frasnelli M; Sglavo VM
    Acta Biomater; 2016 Mar; 33():283-9. PubMed ID: 26796207
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro evaluation of Ag-containing calcium phosphates: Effectiveness of Ag-incorporated β-tricalcium phosphate.
    Gokcekaya O; Ueda K; Ogasawara K; Kanetaka H; Narushima T
    Mater Sci Eng C Mater Biol Appl; 2017 Jun; 75():926-933. PubMed ID: 28415548
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cu-doping of calcium phosphate bioceramics: From mechanism to the control of cytotoxicity.
    Gomes S; Vichery C; Descamps S; Martinez H; Kaur A; Jacobs A; Nedelec JM; Renaudin G
    Acta Biomater; 2018 Jan; 65():462-474. PubMed ID: 29066420
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation, characterization and mechanical performance of dense beta-TCP ceramics with/without magnesium substitution.
    Zhang X; Jiang F; Groth T; Vecchio KS
    J Mater Sci Mater Med; 2008 Sep; 19(9):3063-70. PubMed ID: 18392667
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mg- and Zn-modified calcium phosphates prepared by biomimetic precipitation and subsequent treatment at high temperature.
    Rabadjieva D; Tepavitcharova S; Gergulova R; Sezanova K; Titorenkova R; Petrov O; Dyulgerova E
    J Mater Sci Mater Med; 2011 Oct; 22(10):2187-96. PubMed ID: 21870084
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microwave processing of calcium phosphate and magnesium phosphate based orthopedic bioceramics: A state-of-the-art review.
    Sikder P; Ren Y; Bhaduri SB
    Acta Biomater; 2020 Jul; 111():29-53. PubMed ID: 32447068
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.