These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 29187019)
1. Microfluidic system for synthesis of nanofibrous conductive hydrogel and muscle differentiation. Hosseinzadeh S; Rezayat SM; Giaseddin A; Aliyan A; Soleimani M J Biomater Appl; 2018 Feb; 32(7):853-861. PubMed ID: 29187019 [TBL] [Abstract][Full Text] [Related]
2. The different fate of satellite cells on conductive composite electrospun nanofibers with graphene and graphene oxide nanosheets. Mahmoudifard M; Soleimani M; Hatamie S; Zamanlui S; Ranjbarvan P; Vossoughi M; Hosseinzadeh S Biomed Mater; 2016 Mar; 11(2):025006. PubMed ID: 26962722 [TBL] [Abstract][Full Text] [Related]
3. Microfluidic-enhanced 3D bioprinting of aligned myoblast-laden hydrogels leads to functionally organized myofibers in vitro and in vivo. Costantini M; Testa S; Mozetic P; Barbetta A; Fuoco C; Fornetti E; Tamiro F; Bernardini S; Jaroszewicz J; Święszkowski W; Trombetta M; Castagnoli L; Seliktar D; Garstecki P; Cesareni G; Cannata S; Rainer A; Gargioli C Biomaterials; 2017 Jul; 131():98-110. PubMed ID: 28388499 [TBL] [Abstract][Full Text] [Related]
4. Neural progenitor cells survival and neuronal differentiation in peptide-based hydrogels. Song Y; Li Y; Zheng Q; Wu K; Guo X; Wu Y; Yin M; Wu Q; Fu X J Biomater Sci Polym Ed; 2011; 22(4-6):475-87. PubMed ID: 20566041 [TBL] [Abstract][Full Text] [Related]
5. [PREPARATION AND BIOCOMPATIBILITY EVALUATION OF A FUNCTIONAL SELF-ASSEMBLING PEPTIDE NANOFIBER HYDROGEL DESIGNED WITH LINKING THE SHORT FUNCTIONAL MOTIF OF BONE MORPHOGENETIC PROTEIN 7]. Liu L; Wu Y; Tao H; Jia Z; Li X; Wang D; He Q; Ruan D Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2016 Apr; 30(4):491-8. PubMed ID: 27411281 [TBL] [Abstract][Full Text] [Related]
6. Label-Free, High-Throughput Purification of Satellite Cells Using Microfluidic Inertial Separation. Syverud BC; Lin E; Nagrath S; Larkin LM Tissue Eng Part C Methods; 2018 Jan; 24(1):32-41. PubMed ID: 28946802 [TBL] [Abstract][Full Text] [Related]
7. Efficacy of self-assembled hydrogels composed of positively or negatively charged peptides as scaffolds for cell culture. Nagayasu A; Yokoi H; Minaguchi JA; Hosaka YZ; Ueda H; Takehana K J Biomater Appl; 2012 Feb; 26(6):651-65. PubMed ID: 21123284 [TBL] [Abstract][Full Text] [Related]
8. Molecular analysis of muscle progenitor cells on extracellular matrix coatings and hydrogels. Palade J; Pal A; Rawls A; Stabenfeldt S; Wilson-Rawls J Acta Biomater; 2019 Oct; 97():296-309. PubMed ID: 31415920 [TBL] [Abstract][Full Text] [Related]
9. Injectable thermosensitive chitosan/β-glycerophosphate/collagen hydrogel maintains the plasticity of skeletal muscle satellite cells and supports their in vivo viability. Ding K; Yang Z; Zhang YL; Xu JZ Cell Biol Int; 2013 Sep; 37(9):977-87. PubMed ID: 23620126 [TBL] [Abstract][Full Text] [Related]
10. A microfluidic chip containing multiple 3D nanofibrous scaffolds for culturing human pluripotent stem cells. Wertheim L; Shapira A; Amir RJ; Dvir T Nanotechnology; 2018 Apr; 29(13):13LT01. PubMed ID: 29384490 [TBL] [Abstract][Full Text] [Related]
11. Elastic hydrogel substrate supports robust expansion of murine myoblasts and enhances their engraftment. Ding K; Yang Z; Xu JZ; Liu WY; Zeng Q; Hou F; Lin S Exp Cell Res; 2015 Sep; 337(1):111-9. PubMed ID: 26210646 [TBL] [Abstract][Full Text] [Related]
12. Scaffolds for 3D in vitro culture of neural lineage cells. Murphy AR; Laslett A; O'Brien CM; Cameron NR Acta Biomater; 2017 May; 54():1-20. PubMed ID: 28259835 [TBL] [Abstract][Full Text] [Related]
13. The nanofibrous PAN-PANi scaffold as an efficient substrate for skeletal muscle differentiation using satellite cells. Hosseinzadeh S; Mahmoudifard M; Mohamadyar-Toupkanlou F; Dodel M; Hajarizadeh A; Adabi M; Soleimani M Bioprocess Biosyst Eng; 2016 Jul; 39(7):1163-72. PubMed ID: 27086138 [TBL] [Abstract][Full Text] [Related]
14. Nanofiber-structured hydrogel yarns with pH-response capacity and cardiomyocyte-drivability for bio-microactuator application. Wu S; Duan B; Qin X; Butcher JT Acta Biomater; 2017 Sep; 60():144-153. PubMed ID: 28733255 [TBL] [Abstract][Full Text] [Related]
15. Hydrogel/microcarrier cell scaffolds for rapid expansion of satellite cells from large yellow croakers: Differential analysis between 2D and 3D cell culture. Yin H; Zhou X; Jin Hur S; Liu H; Zheng H; Xue C Food Res Int; 2024 Jun; 186():114396. PubMed ID: 38729738 [TBL] [Abstract][Full Text] [Related]
16. [Neural stem cells induced by neotype three-dimensional polypeptide-based self-assembled hydrogel]. Song Y; Zheng Q; Guo X Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2010 Jun; 27(3):612-6. PubMed ID: 20649030 [TBL] [Abstract][Full Text] [Related]
17. Nano-/microfiber scaffold for tissue engineering: physical and biological properties. Santana BP; Paganotto GF; Nedel F; Piva E; de Carvalho RV; Nör JE; Demarco FF; Carreño NL J Biomed Mater Res A; 2012 Nov; 100(11):3051-8. PubMed ID: 22711621 [TBL] [Abstract][Full Text] [Related]
18. Bicomponent electrospinning to fabricate three-dimensional hydrogel-hybrid nanofibrous scaffolds with spatial fiber tortuosity. Jin G; Lee S; Kim SH; Kim M; Jang JH Biomed Microdevices; 2014 Dec; 16(6):793-804. PubMed ID: 24972552 [TBL] [Abstract][Full Text] [Related]
19. Visible light induced electropolymerization of suspended hydrogel bioscaffolds in a microfluidic chip. Li P; Yu H; Liu N; Wang F; Lee GB; Wang Y; Liu L; Li WJ Biomater Sci; 2018 May; 6(6):1371-1378. PubMed ID: 29790875 [TBL] [Abstract][Full Text] [Related]
20. Multilayer microfluidic PEGDA hydrogels. Cuchiara MP; Allen AC; Chen TM; Miller JS; West JL Biomaterials; 2010 Jul; 31(21):5491-7. PubMed ID: 20447685 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]