These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Acetylation of Smad2 by the co-activator p300 regulates activin and transforming growth factor beta response. Tu AW; Luo K J Biol Chem; 2007 Jul; 282(29):21187-96. PubMed ID: 17478422 [TBL] [Abstract][Full Text] [Related]
3. Interleukin 1 β-induced SMAD2/3 linker modifications are TAK1 dependent and delay TGFβ signaling in primary human mesenchymal stem cells. van den Akker GG; van Beuningen HM; Vitters EL; Koenders MI; van de Loo FA; van Lent PL; Blaney Davidson EN; van der Kraan PM Cell Signal; 2017 Dec; 40():190-199. PubMed ID: 28943409 [TBL] [Abstract][Full Text] [Related]
4. LEM domain-containing protein 3 antagonizes TGFβ-SMAD2/3 signaling in a stiffness-dependent manner in both the nucleus and cytosol. Chambers DM; Moretti L; Zhang JJ; Cooper SW; Chambers DM; Santangelo PJ; Barker TH J Biol Chem; 2018 Oct; 293(41):15867-15886. PubMed ID: 30108174 [TBL] [Abstract][Full Text] [Related]
5. Fine-tuning of Smad protein function by poly(ADP-ribose) polymerases and poly(ADP-ribose) glycohydrolase during transforming growth factor β signaling. Dahl M; Maturi V; Lönn P; Papoutsoglou P; Zieba A; Vanlandewijck M; van der Heide LP; Watanabe Y; Söderberg O; Hottiger MO; Heldin CH; Moustakas A PLoS One; 2014; 9(8):e103651. PubMed ID: 25133494 [TBL] [Abstract][Full Text] [Related]
6. Sirtuin 1 activation attenuates cardiac fibrosis in a rodent pressure overload model by modifying Smad2/3 transactivation. Bugyei-Twum A; Ford C; Civitarese R; Seegobin J; Advani SL; Desjardins JF; Kabir G; Zhang Y; Mitchell M; Switzer J; Thai K; Shen V; Abadeh A; Singh KK; Billia F; Advani A; Gilbert RE; Connelly KA Cardiovasc Res; 2018 Oct; 114(12):1629-1641. PubMed ID: 29800064 [TBL] [Abstract][Full Text] [Related]
7. Transcriptional regulation of SM22alpha by Wnt3a: convergence with TGFbeta(1)/Smad signaling at a novel regulatory element. Shafer SL; Towler DA J Mol Cell Cardiol; 2009 May; 46(5):621-35. PubMed ID: 19344627 [TBL] [Abstract][Full Text] [Related]
8. Requirement for the dynein light chain km23-1 in a Smad2-dependent transforming growth factor-beta signaling pathway. Jin Q; Ding W; Mulder KM J Biol Chem; 2007 Jun; 282(26):19122-32. PubMed ID: 17420258 [TBL] [Abstract][Full Text] [Related]
9. Positive and negative regulation of the transforming growth factor beta/activin target gene goosecoid by the TFII-I family of transcription factors. Ku M; Sokol SY; Wu J; Tussie-Luna MI; Roy AL; Hata A Mol Cell Biol; 2005 Aug; 25(16):7144-57. PubMed ID: 16055724 [TBL] [Abstract][Full Text] [Related]
10. The transcription factor GLI1 interacts with SMAD proteins to modulate transforming growth factor β-induced gene expression in a p300/CREB-binding protein-associated factor (PCAF)-dependent manner. Nye MD; Almada LL; Fernandez-Barrena MG; Marks DL; Elsawa SF; Vrabel A; Tolosa EJ; Ellenrieder V; Fernandez-Zapico ME J Biol Chem; 2014 May; 289(22):15495-506. PubMed ID: 24739390 [TBL] [Abstract][Full Text] [Related]
11. Transcriptional regulation of Smad2 is required for enhancement of TGFbeta/Smad signaling by TGFbeta inducible early gene. Johnsen SA; Subramaniam M; Katagiri T; Janknecht R; Spelsberg TC J Cell Biochem; 2002; 87(2):233-41. PubMed ID: 12244575 [TBL] [Abstract][Full Text] [Related]
12. NEDD4-2 (neural precursor cell expressed, developmentally down-regulated 4-2) negatively regulates TGF-beta (transforming growth factor-beta) signalling by inducing ubiquitin-mediated degradation of Smad2 and TGF-beta type I receptor. Kuratomi G; Komuro A; Goto K; Shinozaki M; Miyazawa K; Miyazono K; Imamura T Biochem J; 2005 Mar; 386(Pt 3):461-70. PubMed ID: 15496141 [TBL] [Abstract][Full Text] [Related]
13. Chromatin immunoprecipitation on microarray analysis of Smad2/3 binding sites reveals roles of ETS1 and TFAP2A in transforming growth factor beta signaling. Koinuma D; Tsutsumi S; Kamimura N; Taniguchi H; Miyazawa K; Sunamura M; Imamura T; Miyazono K; Aburatani H Mol Cell Biol; 2009 Jan; 29(1):172-86. PubMed ID: 18955504 [TBL] [Abstract][Full Text] [Related]
14. The DNA binding activities of Smad2 and Smad3 are regulated by coactivator-mediated acetylation. Simonsson M; Kanduri M; Grönroos E; Heldin CH; Ericsson J J Biol Chem; 2006 Dec; 281(52):39870-80. PubMed ID: 17074756 [TBL] [Abstract][Full Text] [Related]
15. Acetylation of KLF5 alters the assembly of p15 transcription factors in transforming growth factor-beta-mediated induction in epithelial cells. Guo P; Zhao KW; Dong XY; Sun X; Dong JT J Biol Chem; 2009 Jul; 284(27):18184-93. PubMed ID: 19419955 [TBL] [Abstract][Full Text] [Related]
16. Aberrant TGFβ Signaling Contributes to Altered Trophoblast Differentiation in Preeclampsia. Xu J; Sivasubramaniyam T; Yinon Y; Tagliaferro A; Ray J; Nevo O; Post M; Caniggia I Endocrinology; 2016 Feb; 157(2):883-99. PubMed ID: 26653761 [TBL] [Abstract][Full Text] [Related]
17. Identification of the gene transcription and apoptosis mediated by TGF-beta-Smad2/3-Smad4 signaling. Yu J; Zhang L; Chen A; Xiang G; Wang Y; Wu J; Mitchelson K; Cheng J; Zhou Y J Cell Physiol; 2008 May; 215(2):422-33. PubMed ID: 17960585 [TBL] [Abstract][Full Text] [Related]
18. Participation of the SMAD2/3 signalling pathway in the down regulation of megalin/LRP2 by transforming growth factor beta (TGF-ß1). Cabezas F; Farfán P; Marzolo MP PLoS One; 2019; 14(5):e0213127. PubMed ID: 31120873 [TBL] [Abstract][Full Text] [Related]
19. Erbin inhibits transforming growth factor beta signaling through a novel Smad-interacting domain. Dai F; Chang C; Lin X; Dai P; Mei L; Feng XH Mol Cell Biol; 2007 Sep; 27(17):6183-94. PubMed ID: 17591701 [TBL] [Abstract][Full Text] [Related]
20. ΔNp63 bookmarks and creates an accessible epigenetic environment for TGFβ-induced cancer cell stemness and invasiveness. Vasilaki E; Bai Y; Ali MM; Sundqvist A; Moustakas A; Heldin CH Cell Commun Signal; 2024 Aug; 22(1):411. PubMed ID: 39180088 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]