BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 29187215)

  • 1. Criteria for identifying the molecular basis of the engram (CaMKII, PKMzeta).
    Lisman J
    Mol Brain; 2017 Nov; 10(1):55. PubMed ID: 29187215
    [TBL] [Abstract][Full Text] [Related]  

  • 2. What does LTP tell us about the roles of CaMKII and PKMζ in memory?
    Sacktor TC; Fenton AA
    Mol Brain; 2018 Dec; 11(1):77. PubMed ID: 30593289
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Memory Erasure Experiments Indicate a Critical Role of CaMKII in Memory Storage.
    Rossetti T; Banerjee S; Kim C; Leubner M; Lamar C; Gupta P; Lee B; Neve R; Lisman J
    Neuron; 2017 Sep; 96(1):207-216.e2. PubMed ID: 28957669
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The CaMKII/NMDAR complex as a molecular memory.
    Sanhueza M; Lisman J
    Mol Brain; 2013 Feb; 6():10. PubMed ID: 23410178
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In memoriam: John Lisman - commentaries on CaMKII as a memory molecule.
    Bear MF; Cooke SF; Giese KP; Kaang BK; Kennedy MB; Kim JI; Morris RGM; Park P
    Mol Brain; 2018 Dec; 11(1):76. PubMed ID: 30593282
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biochemical principles underlying the stable maintenance of LTP by the CaMKII/NMDAR complex.
    Lisman J; Raghavachari S
    Brain Res; 2015 Sep; 1621():51-61. PubMed ID: 25511992
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PKMzeta, LTP maintenance, and the dynamic molecular biology of memory storage.
    Sacktor TC
    Prog Brain Res; 2008; 169():27-40. PubMed ID: 18394466
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparing Theories for the Maintenance of Late LTP and Long-Term Memory: Computational Analysis of the Roles of Kinase Feedback Pathways and Synaptic Reactivation.
    Smolen P; Baxter DA; Byrne JH
    Front Comput Neurosci; 2020; 14():569349. PubMed ID: 33390922
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reversal of synaptic memory by Ca2+/calmodulin-dependent protein kinase II inhibitor.
    Sanhueza M; McIntyre CC; Lisman JE
    J Neurosci; 2007 May; 27(19):5190-9. PubMed ID: 17494705
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Memory maintenance by PKMζ--an evolutionary perspective.
    Sacktor TC
    Mol Brain; 2012 Sep; 5():31. PubMed ID: 22986281
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reciprocal activation within a kinase effector complex: A mechanism for the persistence of molecular memory.
    Saneyoshi T
    Brain Res Bull; 2021 May; 170():58-64. PubMed ID: 33556559
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Persistent increases of PKMζ in memory-activated neurons trace LTP maintenance during spatial long-term memory storage.
    Hsieh C; Tsokas P; Grau-Perales A; Lesburguères E; Bukai J; Khanna K; Chorny J; Chung A; Jou C; Burghardt NS; Denny CA; Flores-Obando RE; Hartley BR; Rodríguez Valencia LM; Hernández AI; Bergold PJ; Cottrell JE; Alarcon JM; Fenton AA; Sacktor TC
    Eur J Neurosci; 2021 Oct; 54(8):6795-6814. PubMed ID: 33540466
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular constraints on synaptic tagging and maintenance of long-term potentiation: a predictive model.
    Smolen P; Baxter DA; Byrne JH
    PLoS Comput Biol; 2012; 8(8):e1002620. PubMed ID: 22876169
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of PKMζ in the maintenance of long-term memory: a review.
    Patel H; Zamani R
    Rev Neurosci; 2021 Jul; 32(5):481-494. PubMed ID: 33550786
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modelling the dynamics of CaMKII-NMDAR complex related to memory formation in synapses: the possible roles of threonine 286 autophosphorylation of CaMKII in long term potentiation.
    He Y; Kulasiri D; Samarasinghe S
    J Theor Biol; 2015 Jan; 365():403-19. PubMed ID: 25446714
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Compensation for PKMζ in long-term potentiation and spatial long-term memory in mutant mice.
    Tsokas P; Hsieh C; Yao Y; Lesburguères E; Wallace EJC; Tcherepanov A; Jothianandan D; Hartley BR; Pan L; Rivard B; Farese RV; Sajan MP; Bergold PJ; Hernández AI; Cottrell JE; Shouval HZ; Fenton AA; Sacktor TC
    Elife; 2016 May; 5():. PubMed ID: 27187150
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ca2+/calmodulin-dependent protein kinase II and protein kinase C activities mediate extracellular glucose-regulated hippocampal synaptic efficacy.
    Moriguchi S; Oomura Y; Shioda N; Han F; Hori N; Aou S; Fukunaga K
    Mol Cell Neurosci; 2011 Jan; 46(1):101-7. PubMed ID: 20807573
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Making synapses strong: metaplasticity prolongs associativity of long-term memory by switching synaptic tag mechanisms.
    Li Q; Rothkegel M; Xiao ZC; Abraham WC; Korte M; Sajikumar S
    Cereb Cortex; 2014 Feb; 24(2):353-63. PubMed ID: 23048020
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Is persistent activity of calcium/calmodulin-dependent kinase required for the maintenance of LTP?
    Chen HX; Otmakhov N; Strack S; Colbran RJ; Lisman JE
    J Neurophysiol; 2001 Apr; 85(4):1368-76. PubMed ID: 11287461
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of inhibitory autophosphorylation of calcium/calmodulin-dependent kinase II (αCAMKII) in persistent (>24 h) hippocampal LTP and in LTD facilitated by novel object-place learning and recognition in mice.
    Goh JJ; Manahan-Vaughan D
    Behav Brain Res; 2015 May; 285():79-88. PubMed ID: 24480420
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.