These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 29187440)

  • 21. Targeting of MAPK-associated molecules identifies SON as a prime target to attenuate the proliferation and tumorigenicity of pancreatic cancer cells.
    Furukawa T; Tanji E; Kuboki Y; Hatori T; Yamamoto M; Shimizu K; Shibata N; Shiratori K
    Mol Cancer; 2012 Dec; 11():88. PubMed ID: 23227827
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Hypoxia and Transforming Growth Factor β Cooperate to Induce Fibulin-5 Expression in Pancreatic Cancer.
    Topalovski M; Hagopian M; Wang M; Brekken RA
    J Biol Chem; 2016 Oct; 291(42):22244-22252. PubMed ID: 27531748
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Involvement of the Interferon Signaling Pathways in Pancreatic Cancer Cells.
    Fujisawa M; Kanda T; Shibata T; Sasaki R; Masuzaki R; Matsumoto N; Nirei K; Imazu H; Kuroda K; Sugitani M; Takayama T; Moriyama M
    Anticancer Res; 2020 Aug; 40(8):4445-4455. PubMed ID: 32727774
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Protein-bound polysaccharide decreases invasiveness and proliferation in pancreatic cancer by inhibition of hedgehog signaling and HIF-1α pathways under hypoxia.
    Onishi H; Morisaki T; Nakao F; Odate S; Morisaki T; Katano M
    Cancer Lett; 2013 Jul; 335(2):289-98. PubMed ID: 23485726
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hypoxia-independent gene expression mediated by SOX9 promotes aggressive pancreatic tumor biology.
    Camaj P; Jäckel C; Krebs S; De Toni EN; Blum H; Jauch KW; Nelson PJ; Bruns CJ
    Mol Cancer Res; 2014 Mar; 12(3):421-32. PubMed ID: 24302456
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Role of Dimerized C16orf74 in Aggressive Pancreatic Cancer: A Novel Therapeutic Target.
    Kushibiki T; Nakamura T; Tsuda M; Tsuchikawa T; Hontani K; Inoko K; Takahashi M; Asano T; Okamura K; Murakami S; Kurashima Y; Ebihara Y; Noji T; Nakanishi Y; Tanaka K; Maishi N; Sasaki K; Park WR; Shichinohe T; Hida K; Tanaka S; Hirano S
    Mol Cancer Ther; 2020 Jan; 19(1):187-198. PubMed ID: 31597713
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The microRNA-218 and ROBO-1 signaling axis correlates with the lymphatic metastasis of pancreatic cancer.
    He H; Di Y; Liang M; Yang F; Yao L; Hao S; Li J; Jiang Y; Jin C; Fu D
    Oncol Rep; 2013 Aug; 30(2):651-8. PubMed ID: 23733161
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Inhibition of renalase expression and signaling has antitumor activity in pancreatic cancer.
    Guo X; Hollander L; MacPherson D; Wang L; Velazquez H; Chang J; Safirstein R; Cha C; Gorelick F; Desir GV
    Sci Rep; 2016 Mar; 6():22996. PubMed ID: 26972355
    [TBL] [Abstract][Full Text] [Related]  

  • 29. IQGAP1 promotes pancreatic cancer progression and epithelial-mesenchymal transition (EMT) through Wnt/β-catenin signaling.
    Hu W; Wang Z; Zhang S; Lu X; Wu J; Yu K; Ji A; Lu W; Wang Z; Wu J; Jiang C
    Sci Rep; 2019 May; 9(1):7539. PubMed ID: 31101875
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Long noncoding RNA MIR31HG exhibits oncogenic property in pancreatic ductal adenocarcinoma and is negatively regulated by miR-193b.
    Yang H; Liu P; Zhang J; Peng X; Lu Z; Yu S; Meng Y; Tong WM; Chen J
    Oncogene; 2016 Jul; 35(28):3647-57. PubMed ID: 26549028
    [TBL] [Abstract][Full Text] [Related]  

  • 31. TMEM158 promotes pancreatic cancer aggressiveness by activation of TGFβ1 and PI3K/AKT signaling pathway.
    Fu Y; Yao N; Ding D; Zhang X; Liu H; Ma L; Shi W; Zhu C; Tang L
    J Cell Physiol; 2020 Mar; 235(3):2761-2775. PubMed ID: 31531884
    [TBL] [Abstract][Full Text] [Related]  

  • 32. STK33 Promotes Growth and Progression of Pancreatic Cancer as a Critical Downstream Mediator of HIF1α.
    Kong F; Kong X; Du Y; Chen Y; Deng X; Zhu J; Du J; Li L; Jia Z; Xie D; Li Z; Xie K
    Cancer Res; 2017 Dec; 77(24):6851-6862. PubMed ID: 29038348
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Loss of the transcriptional repressor TGIF1 results in enhanced Kras-driven development of pancreatic cancer.
    Weng CC; Hsieh MJ; Wu CC; Lin YC; Shan YS; Hung WC; Chen LT; Cheng KH
    Mol Cancer; 2019 May; 18(1):96. PubMed ID: 31109321
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Claudin-4 expression decreases invasiveness and metastatic potential of pancreatic cancer.
    Michl P; Barth C; Buchholz M; Lerch MM; Rolke M; Holzmann KH; Menke A; Fensterer H; Giehl K; Löhr M; Leder G; Iwamura T; Adler G; Gress TM
    Cancer Res; 2003 Oct; 63(19):6265-71. PubMed ID: 14559813
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of the silencing of hypoxia-inducible Factor-1 alpha on metastasis of pancreatic cancer.
    Wei H; Li F; Fu P; Liu X
    Eur Rev Med Pharmacol Sci; 2013 Feb; 17(4):436-46. PubMed ID: 23467940
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Silencing of long noncoding RNA LINC00958 prevents tumor initiation of pancreatic cancer by acting as a sponge of microRNA-330-5p to down-regulate PAX8.
    Chen S; Chen JZ; Zhang JQ; Chen HX; Qiu FN; Yan ML; Tian YF; Peng CH; Shen BY; Chen YL; Wang YD
    Cancer Lett; 2019 Apr; 446():49-61. PubMed ID: 30639194
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hypoxia enhances the interaction between pancreatic stellate cells and cancer cells via increased secretion of connective tissue growth factor.
    Eguchi D; Ikenaga N; Ohuchida K; Kozono S; Cui L; Fujiwara K; Fujino M; Ohtsuka T; Mizumoto K; Tanaka M
    J Surg Res; 2013 May; 181(2):225-33. PubMed ID: 22795353
    [TBL] [Abstract][Full Text] [Related]  

  • 38. SCF, regulated by HIF-1α, promotes pancreatic ductal adenocarcinoma cell progression.
    Gao C; Li S; Zhao T; Chen J; Ren H; Zhang H; Wang X; Lang M; Liu J; Gao S; Zhao X; Sheng J; Yuan Z; Hao J
    PLoS One; 2015; 10(3):e0121338. PubMed ID: 25799412
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Regulation of HIF1α under Hypoxia by APE1/Ref-1 Impacts CA9 Expression: Dual Targeting in Patient-Derived 3D Pancreatic Cancer Models.
    Logsdon DP; Grimard M; Luo M; Shahda S; Jiang Y; Tong Y; Yu Z; Zyromski N; Schipani E; Carta F; Supuran CT; Korc M; Ivan M; Kelley MR; Fishel ML
    Mol Cancer Ther; 2016 Nov; 15(11):2722-2732. PubMed ID: 27535970
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hippo transducer TAZ promotes epithelial mesenchymal transition and supports pancreatic cancer progression.
    Xie D; Cui J; Xia T; Jia Z; Wang L; Wei W; Zhu A; Gao Y; Xie K; Quan M
    Oncotarget; 2015 Nov; 6(34):35949-63. PubMed ID: 26416426
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.