These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

314 related articles for article (PubMed ID: 29187556)

  • 41. Hindlimb muscle function in relation to speed and gait: in vivo patterns of strain and activation in a hip and knee extensor of the rat (Rattus norvegicus).
    Gillis GB; Biewener AA
    J Exp Biol; 2001 Aug; 204(Pt 15):2717-31. PubMed ID: 11533122
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Functional role of muscle reflexes for force generation in the decerebrate walking cat.
    Stein RB; Misiaszek JE; Pearson KG
    J Physiol; 2000 Jun; 525 Pt 3(Pt 3):781-91. PubMed ID: 10856129
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effect of slope and sciatic nerve injury on ankle muscle recruitment and hindlimb kinematics during walking in the rat.
    Sabatier MJ; To BN; Nicolini J; English AW
    J Exp Biol; 2011 Mar; 214(Pt 6):1007-16. PubMed ID: 21346129
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Contribution of force feedback to ankle extensor activity in decerebrate walking cats.
    Donelan JM; Pearson KG
    J Neurophysiol; 2004 Oct; 92(4):2093-104. PubMed ID: 15381742
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Segmental reflex action in normal and decerebrate cats.
    Hoffer JA; Leonard TR; Cleland CL; Sinkjaer T
    J Neurophysiol; 1990 Nov; 64(5):1611-24. PubMed ID: 2283543
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Forms of forward quadrupedal locomotion. III. A comparison of posture, hindlimb kinematics, and motor patterns for downslope and level walking.
    Smith JL; Carlson-Kuhta P; Trank TV
    J Neurophysiol; 1998 Apr; 79(4):1702-16. PubMed ID: 9535940
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Incomplete rematching of nerve and muscle properties in motor units after extensive nerve injuries in cat hindlimb muscle.
    Rafuse VF; Gordon T
    J Physiol; 1998 Jun; 509 ( Pt 3)(Pt 3):909-26. PubMed ID: 9596809
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Major role for sensory feedback in soleus EMG activity in the stance phase of walking in man.
    Sinkjaer T; Andersen JB; Ladouceur M; Christensen LO; Nielsen JB
    J Physiol; 2000 Mar; 523 Pt 3(Pt 3):817-27. PubMed ID: 10718758
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Adaptive control for backward quadrupedal walking V. Mutable activation of bifunctional thigh muscles.
    Pratt CA; Buford JA; Smith JL
    J Neurophysiol; 1996 Feb; 75(2):832-42. PubMed ID: 8714656
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Ankle extensor group I afferents excite extensors throughout the hindlimb during fictive locomotion in the cat.
    Guertin P; Angel MJ; Perreault MC; McCrea DA
    J Physiol; 1995 Aug; 487(1):197-209. PubMed ID: 7473249
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effects of ankle extensor muscle afferent inputs on hip abductor and adductor activity in the decerebrate walking cat.
    Bolton DA; Misiaszek JE
    J Neurophysiol; 2012 Dec; 108(11):3034-42. PubMed ID: 22972967
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Altered activation patterns by triceps surae stretch reflex pathways in acute and chronic spinal cord injury.
    Frigon A; Johnson MD; Heckman CJ
    J Neurophysiol; 2011 Oct; 106(4):1669-78. PubMed ID: 21734111
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Modulation of ipsi- and contralateral reflex responses in unrestrained walking cats.
    Duysens J; Loeb GE
    J Neurophysiol; 1980 Nov; 44(5):1024-37. PubMed ID: 7441320
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Feedforward neural control of toe walking in humans.
    Lorentzen J; Willerslev-Olsen M; Hüche Larsen H; Svane C; Forman C; Frisk R; Farmer SF; Kersting U; Nielsen JB
    J Physiol; 2018 Jun; 596(11):2159-2172. PubMed ID: 29572934
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Local loss of proprioception results in disruption of interjoint coordination during locomotion in the cat.
    Abelew TA; Miller MD; Cope TC; Nichols TR
    J Neurophysiol; 2000 Nov; 84(5):2709-14. PubMed ID: 11068014
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Forms of forward quadrupedal locomotion. I. A comparison of posture, hindlimb kinematics, and motor patterns for normal and crouched walking.
    Trank TV; Chen C; Smith JL
    J Neurophysiol; 1996 Oct; 76(4):2316-26. PubMed ID: 8899606
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Mechanical actions of heterogenic reflexes among ankle stabilizers and their interactions with plantarflexors of the cat hindlimb.
    Bonasera SJ; Nichols TR
    J Neurophysiol; 1996 May; 75(5):2050-70. PubMed ID: 8734603
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Muscle force-length dynamics during walking over obstacles indicates delayed recovery and a shift towards more 'strut-like' function in birds with proprioceptive deficit.
    Schwaner MJ; Gordon JC; Biewener AA; Daley MA
    J Exp Biol; 2023 Jun; 226(12):. PubMed ID: 37282982
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Reflex wind-up in early chronic spinal injury: plasticity of motor outputs.
    Johnson MD; Frigon A; Hurteau MF; Cain C; Heckman CJ
    J Neurophysiol; 2017 May; 117(5):2065-2074. PubMed ID: 28250155
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Electromyographic activity in the cross-reinnervated soleus muscle of unrestrained cats.
    Luff AR; Webb SN
    J Physiol; 1985 Aug; 365():13-28. PubMed ID: 4032309
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.