These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1237 related articles for article (PubMed ID: 29187837)

  • 1. Microbiome Datasets Are Compositional: And This Is Not Optional.
    Gloor GB; Macklaim JM; Pawlowsky-Glahn V; Egozcue JJ
    Front Microbiol; 2017; 8():2224. PubMed ID: 29187837
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unifying the analysis of high-throughput sequencing datasets: characterizing RNA-seq, 16S rRNA gene sequencing and selective growth experiments by compositional data analysis.
    Fernandes AD; Reid JN; Macklaim JM; McMurrough TA; Edgell DR; Gloor GB
    Microbiome; 2014; 2():15. PubMed ID: 24910773
    [TBL] [Abstract][Full Text] [Related]  

  • 3. It's all relative: analyzing microbiome data as compositions.
    Gloor GB; Wu JR; Pawlowsky-Glahn V; Egozcue JJ
    Ann Epidemiol; 2016 May; 26(5):322-9. PubMed ID: 27143475
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Large-scale benchmarking reveals false discoveries and count transformation sensitivity in 16S rRNA gene amplicon data analysis methods used in microbiome studies.
    Thorsen J; Brejnrod A; Mortensen M; Rasmussen MA; Stokholm J; Al-Soud WA; Sørensen S; Bisgaard H; Waage J
    Microbiome; 2016 Nov; 4(1):62. PubMed ID: 27884206
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A distance based multisample test for high-dimensional compositional data with applications to the human microbiome.
    Zhang Q; Dao T
    BMC Bioinformatics; 2020 Dec; 21(Suppl 9):205. PubMed ID: 33272203
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comparison of sequencing platforms and bioinformatics pipelines for compositional analysis of the gut microbiome.
    Allali I; Arnold JW; Roach J; Cadenas MB; Butz N; Hassan HM; Koci M; Ballou A; Mendoza M; Ali R; Azcarate-Peril MA
    BMC Microbiol; 2017 Sep; 17(1):194. PubMed ID: 28903732
    [TBL] [Abstract][Full Text] [Related]  

  • 7. tascCODA: Bayesian Tree-Aggregated Analysis of Compositional Amplicon and Single-Cell Data.
    Ostner J; Carcy S; Müller CL
    Front Genet; 2021; 12():766405. PubMed ID: 34950190
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Balances: a New Perspective for Microbiome Analysis.
    Rivera-Pinto J; Egozcue JJ; Pawlowsky-Glahn V; Paredes R; Noguera-Julian M; Calle ML
    mSystems; 2018; 3(4):. PubMed ID: 30035234
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Compositional analysis: a valid approach to analyze microbiome high-throughput sequencing data.
    Gloor GB; Reid G
    Can J Microbiol; 2016 Aug; 62(8):692-703. PubMed ID: 27314511
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Bayesian joint model for compositional mediation effect selection in microbiome data.
    Fu J; Koslovsky MD; Neophytou AM; Vannucci M
    Stat Med; 2023 Jul; 42(17):2999-3015. PubMed ID: 37173609
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Clustering microbiome data using mixtures of logistic normal multinomial models.
    Fang Y; Subedi S
    Sci Rep; 2023 Sep; 13(1):14758. PubMed ID: 37679485
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Compositional data analysis of the microbiome: fundamentals, tools, and challenges.
    Tsilimigras MC; Fodor AA
    Ann Epidemiol; 2016 May; 26(5):330-5. PubMed ID: 27255738
    [TBL] [Abstract][Full Text] [Related]  

  • 13. mbDecoda: a debiased approach to compositional data analysis for microbiome surveys.
    Zong Y; Zhao H; Wang T
    Brief Bioinform; 2024 Mar; 25(3):. PubMed ID: 38701410
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Compositional Data Analysis of Periodontal Disease Microbial Communities.
    Sisk-Hackworth L; Ortiz-Velez A; Reed MB; Kelley ST
    Front Microbiol; 2021; 12():617949. PubMed ID: 34079525
    [TBL] [Abstract][Full Text] [Related]  

  • 15. From RNA-seq to Biological Inference: Using Compositional Data Analysis in Meta-Transcriptomics.
    Macklaim JM; Gloor GB
    Methods Mol Biol; 2018; 1849():193-213. PubMed ID: 30298256
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative metagenomic and metatranscriptomic analyses reveal the breed effect on the rumen microbiome and its associations with feed efficiency in beef cattle.
    Li F; Hitch TCA; Chen Y; Creevey CJ; Guan LL
    Microbiome; 2019 Jan; 7(1):6. PubMed ID: 30642389
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An optimal normalization method for high sparse compositional microbiome data.
    Sohn MB; Monaco C; Gill SR
    PLoS Comput Biol; 2024 Aug; 20(8):e1012338. PubMed ID: 39102403
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phylogenetic factorization of compositional data yields lineage-level associations in microbiome datasets.
    Washburne AD; Silverman JD; Leff JW; Bennett DJ; Darcy JL; Mukherjee S; Fierer N; David LA
    PeerJ; 2017; 5():e2969. PubMed ID: 28289558
    [TBL] [Abstract][Full Text] [Related]  

  • 19. LinDA: linear models for differential abundance analysis of microbiome compositional data.
    Zhou H; He K; Chen J; Zhang X
    Genome Biol; 2022 Apr; 23(1):95. PubMed ID: 35421994
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new pipeline for structural characterization and classification of RNA-Seq microbiome data.
    Racedo S; Portnoy I; Vélez JI; San-Juan-Vergara H; Sanjuan M; Zurek E
    BioData Min; 2021 Jul; 14(1):31. PubMed ID: 34243809
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 62.