These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 29187966)

  • 1. Changing measurements or changing movements? Sampling scale and movement model identifiability across generations of biologging technology.
    Johnson LR; Boersch-Supan PH; Phillips RA; Ryan SJ
    Ecol Evol; 2017 Nov; 7(22):9257-9266. PubMed ID: 29187966
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measurement error causes scale-dependent threshold erosion of biological signals in animal movement data.
    Bradshaw CJ; Sims DW; Hays GC
    Ecol Appl; 2007 Mar; 17(2):628-38. PubMed ID: 17489266
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A probabilistic algorithm to process geolocation data.
    Merkel B; Phillips RA; Descamps S; Yoccoz NG; Moe B; Strøm H
    Mov Ecol; 2016; 4():26. PubMed ID: 27891228
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calibrating animal-borne proximity loggers.
    Rutz C; Morrissey MB; Burns ZT; Burt J; Otis B; St Clair JJ; James R
    Methods Ecol Evol; 2015 Jun; 6(6):656-667. PubMed ID: 27547298
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental verification of dynamic soaring in albatrosses.
    Sachs G; Traugott J; Nesterova AP; Bonadonna F
    J Exp Biol; 2013 Nov; 216(Pt 22):4222-32. PubMed ID: 24172888
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sampling rate and misidentification of Lévy and non-Lévy movement paths.
    Plank MJ; Codling EA
    Ecology; 2009 Dec; 90(12):3546-53. PubMed ID: 20120821
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimizing the use of biologgers for movement ecology research.
    Williams HJ; Taylor LA; Benhamou S; Bijleveld AI; Clay TA; de Grissac S; Demšar U; English HM; Franconi N; Gómez-Laich A; Griffiths RC; Kay WP; Morales JM; Potts JR; Rogerson KF; Rutz C; Spelt A; Trevail AM; Wilson RP; Börger L
    J Anim Ecol; 2020 Jan; 89(1):186-206. PubMed ID: 31424571
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High inter- and intraspecific niche overlap among three sympatrically breeding, closely related seabird species: Generalist foraging as an adaptation to a highly variable environment?
    Dehnhard N; Achurch H; Clarke J; Michel LN; Southwell C; Sumner MD; Eens M; Emmerson L
    J Anim Ecol; 2020 Jan; 89(1):104-119. PubMed ID: 31368149
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Overturning conclusions of Lévy flight movement patterns by fishing boats and foraging animals.
    Edwards AM
    Ecology; 2011 Jun; 92(6):1247-57. PubMed ID: 21797153
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inferring an animal's environment through biologging: quantifying the environmental influence on animal movement.
    Eikelboom JAJ; de Knegt HJ; Klaver M; van Langevelde F; van der Wal T; Prins HHT
    Mov Ecol; 2020; 8():40. PubMed ID: 33088572
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of changing wind conditions on foraging and incubation success in male and female wandering albatrosses.
    Cornioley T; Börger L; Ozgul A; Weimerskirch H
    J Anim Ecol; 2016 Sep; 85(5):1318-27. PubMed ID: 27187714
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Albatrosses and petrels at South Georgia as sentinels of marine debris input from vessels in the southwest Atlantic Ocean.
    Phillips RA; Waluda CM
    Environ Int; 2020 Mar; 136():105443. PubMed ID: 31927465
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Lévy flight foraging hypothesis in a pelagic seabird.
    Focardi S; Cecere JG
    J Anim Ecol; 2014 Mar; 83(2):353-64. PubMed ID: 24102157
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lévy patterns in seabirds are multifaceted describing both spatial and temporal patterning.
    Reynolds AM; Paiva VH; Cecere JG; Focardi S
    Front Zool; 2016; 13():29. PubMed ID: 27366198
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Scale-dependent hierarchical adjustments of movement patterns in a long-range foraging seabird.
    Fritz H; Said S; Weimerskirch H
    Proc Biol Sci; 2003 Jun; 270(1520):1143-8. PubMed ID: 12816652
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploring the interplay between small and large scales movements in a neotropical small mammal.
    Brigatti E; Ríos-Uzeda B; Vieira MV
    Mov Ecol; 2024 Mar; 12(1):23. PubMed ID: 38528635
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Daily activity budgets reveal a quasi-flightless stage during non-breeding in Hawaiian albatrosses.
    Gutowsky SE; Gutowsky LF; Jonsen ID; Leonard ML; Naughton MB; Romano MD; Shaffer SA
    Mov Ecol; 2014; 2(1):23. PubMed ID: 25709832
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantifying individual specialization using tracking data: a case study on two species of albatrosses.
    Bonnet-Lebrun AS; Phillips RA; Manica A; Rodrigues ASL
    Mar Biol; 2018; 165(10):152. PubMed ID: 30220735
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coupling instantaneous energy-budget models and behavioural mode analysis to estimate optimal foraging strategy: an example with wandering albatrosses.
    Louzao M; Wiegand T; Bartumeus F; Weimerskirch H
    Mov Ecol; 2014; 2(1):8. PubMed ID: 25520818
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.