These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 29188008)

  • 1. Ecotypic differences in the phenology of the tundra species
    Parker TC; Tang J; Clark MB; Moody MM; Fetcher N
    Ecol Evol; 2017 Nov; 7(22):9775-9786. PubMed ID: 29188008
    [No Abstract]   [Full Text] [Related]  

  • 2. Responses of root phenology in ecotypes of Eriophorum vaginatum to transplantation and warming in the Arctic.
    Ma T; Parker T; Unger S; Gewirtzman J; Fetcher N; Moody ML; Tang J
    Sci Total Environ; 2022 Jan; 805():149926. PubMed ID: 34543789
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of growth temperature on photosynthetic capacity and respiration in three ecotypes of
    Schedlbauer JL; Fetcher N; Hood K; Moody ML; Tang J
    Ecol Evol; 2018 Apr; 8(7):3711-3725. PubMed ID: 29686852
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plant phenological responses to a long-term experimental extension of growing season and soil warming in the tussock tundra of Alaska.
    Khorsand Rosa R; Oberbauer SF; Starr G; Parker La Puma I; Pop E; Ahlquist L; Baldwin T
    Glob Chang Biol; 2015 Dec; 21(12):4520-32. PubMed ID: 26183112
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential responses of ecotypes to climate in a ubiquitous Arctic sedge: implications for future ecosystem C cycling.
    Curasi SR; Parker TC; Rocha AV; Moody ML; Tang J; Fetcher N
    New Phytol; 2019 Jul; 223(1):180-192. PubMed ID: 30883787
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Landscape Genomics Provides Evidence of Ecotypic Adaptation and a Barrier to Gene Flow at Treeline for the Arctic Foundation Species
    Stunz E; Fetcher N; Lavretsky P; Mohl JE; Tang J; Moody ML
    Front Plant Sci; 2022; 13():860439. PubMed ID: 35401613
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of simulated grazing on foliage and root production and biomass allocation in an arctic tundra sedge (Eriophorum vaginatum).
    Archer S; Tieszen LL
    Oecologia; 1983 Apr; 58(1):92-102. PubMed ID: 28310652
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative transcriptomics of an arctic foundation species, tussock cottongrass (Eriophorum vaginatum), during an extreme heat event.
    Mohl JE; Fetcher N; Stunz E; Tang J; Moody ML
    Sci Rep; 2020 Jun; 10(1):8990. PubMed ID: 32488082
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diurnal patterns of CO2 and H2O exchange of the Arctic sedges Eriophorum angustifolium and E. vaginatum (Cyperaceae).
    Gebauer R; Reynolds J; Tenhunen J
    Am J Bot; 1998 Apr; 85(4):592. PubMed ID: 21684941
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Long-Term Response of an Arctic Sedge to Climate Change: A Simulation Study.
    Leadley PW; Reynolds JF
    Ecol Appl; 1992 Nov; 2(4):323-340. PubMed ID: 27759275
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nitrogen availability increases in a tundra ecosystem during five years of experimental permafrost thaw.
    Salmon VG; Soucy P; Mauritz M; Celis G; Natali SM; Mack MC; Schuur EA
    Glob Chang Biol; 2016 May; 22(5):1927-41. PubMed ID: 26718892
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Seasonal control over allocation to reproduction in a tussock-forming and a rhizomatous species of Eriophorum in central Alaska.
    Mark AF; Chapin FS
    Oecologia; 1989 Jan; 78(1):27-34. PubMed ID: 28311898
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of drainage and temperature on carbon balance of tussock tundra micrososms.
    Johnson LC; Shaver GR; Giblin AE; Nadelhoffer KJ; Rastetter ER; Laundre JA; Murray GL
    Oecologia; 1996 Dec; 108(4):737-748. PubMed ID: 28307809
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Climate adaptation is not enough: warming does not facilitate success of southern tundra plant populations in the high Arctic.
    Bjorkman AD; Vellend M; Frei ER; Henry GH
    Glob Chang Biol; 2017 Apr; 23(4):1540-1551. PubMed ID: 27391174
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Changes in the structure and function of northern Alaskan ecosystems when considering variable leaf-out times across groupings of species in a dynamic vegetation model.
    Euskirchen ES; Carman TB; McGuire AD
    Glob Chang Biol; 2014 Mar; 20(3):963-78. PubMed ID: 24105949
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phenology and species determine growing-season albedo increase at the altitudinal limit of shrub growth in the sub-Arctic.
    Williamson SN; Barrio IC; Hik DS; Gamon JA
    Glob Chang Biol; 2016 Nov; 22(11):3621-3631. PubMed ID: 27158930
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Clinal variation in stomatal characteristics of an Arctic sedge, Eriophorum vaginatum (Cyperaceae).
    Peterson CA; Fetcher N; McGraw JB; Bennington CC
    Am J Bot; 2012 Sep; 99(9):1562-71. PubMed ID: 22922398
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inter-annual variability of NDVI in response to long-term warming and fertilization in wet sedge and tussock tundra.
    Boelman NT; Stieglitz M; Griffin KL; Shaver GR
    Oecologia; 2005 May; 143(4):588-97. PubMed ID: 15812655
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coupled long-term summer warming and deeper snow alters species composition and stimulates gross primary productivity in tussock tundra.
    Leffler AJ; Klein ES; Oberbauer SF; Welker JM
    Oecologia; 2016 May; 181(1):287-97. PubMed ID: 26747269
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Insights into the tussock growth form with model-data fusion.
    Curasi SR; Fetcher N; Wright KS; Weldon DP; Rocha AV
    New Phytol; 2023 Jul; 239(2):562-575. PubMed ID: 36653954
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.