BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 29188089)

  • 1. Improving lateral resolution and image quality of optical coherence tomography by the multi-frame superresolution technique for 3D tissue imaging.
    Shen K; Lu H; Baig S; Wang MR
    Biomed Opt Express; 2017 Nov; 8(11):4887-4918. PubMed ID: 29188089
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lateral image reconstruction of optical coherence tomography using one-dimensional deep deconvolution network.
    Lee M; Bang H; Lee E; Won Y; Kim K; Park S; Yoo H; Lee S
    Lasers Surg Med; 2022 Aug; 54(6):895-906. PubMed ID: 35366377
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography.
    Wojtkowski M; Srinivasan V; Fujimoto JG; Ko T; Schuman JS; Kowalczyk A; Duker JS
    Ophthalmology; 2005 Oct; 112(10):1734-46. PubMed ID: 16140383
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spectral-domain optical coherence tomography with multiple B-scan averaging for enhanced imaging of retinal diseases.
    Sakamoto A; Hangai M; Yoshimura N
    Ophthalmology; 2008 Jun; 115(6):1071-1078.e7. PubMed ID: 18061270
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Speckle Reduction in 3D Optical Coherence Tomography of Retina by A-Scan Reconstruction.
    Cheng J; Tao D; Quan Y; Wong DW; Cheung GC; Akiba M; Liu J
    IEEE Trans Med Imaging; 2016 Oct; 35(10):2270-2279. PubMed ID: 27116734
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vivo three-dimensional high-resolution imaging of rodent retina with spectral-domain optical coherence tomography.
    Ruggeri M; Wehbe H; Jiao S; Gregori G; Jockovich ME; Hackam A; Duan Y; Puliafito CA
    Invest Ophthalmol Vis Sci; 2007 Apr; 48(4):1808-14. PubMed ID: 17389515
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-speed three-dimensional human retinal imaging by line-field spectral domain optical coherence tomography.
    Nakamura Y; Makita S; Yamanari M; Itoh M; Yatagai T; Yasuno Y
    Opt Express; 2007 Jun; 15(12):7103-16. PubMed ID: 19547028
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multi-modal adaptive optics system including fundus photography and optical coherence tomography for the clinical setting.
    Salas M; Drexler W; Levecq X; Lamory B; Ritter M; Prager S; Hafner J; Schmidt-Erfurth U; Pircher M
    Biomed Opt Express; 2016 May; 7(5):1783-96. PubMed ID: 27231621
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Visualization and tissue classification of human breast cancer images using ultrahigh-resolution OCT.
    Yao X; Gan Y; Chang E; Hibshoosh H; Feldman S; Hendon C
    Lasers Surg Med; 2017 Mar; 49(3):258-269. PubMed ID: 28264146
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lateral resolution improvement of oversampled OCT images using Capon estimation of weighted subvolume contribution.
    Bousi E; Zouvani I; Pitris C
    Biomed Opt Express; 2017 Mar; 8(3):1319-1331. PubMed ID: 28663831
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Focus-extension by depth-encoded synthetic aperture in Optical Coherence Tomography.
    Mo J; de Groot M; de Boer JF
    Opt Express; 2013 Apr; 21(8):10048-61. PubMed ID: 23609710
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lateral Resolution of a Commercial Optical Coherence Tomography Instrument.
    Spaide RF; Otto T; Caujolle S; Kübler J; Aumann S; Fischer J; Reisman C; Spahr H; Lessmann A
    Transl Vis Sci Technol; 2022 Jan; 11(1):28. PubMed ID: 35044444
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Motion correction in optical coherence tomography volumes on a per A-scan basis using orthogonal scan patterns.
    Kraus MF; Potsaid B; Mayer MA; Bock R; Baumann B; Liu JJ; Hornegger J; Fujimoto JG
    Biomed Opt Express; 2012 Jun; 3(6):1182-99. PubMed ID: 22741067
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Non-iterative numerical method for laterally superresolving Fourier domain optical coherence tomography.
    Yasuno Y; Sugisaka J; Sando Y; Nakamura Y; Makita S; Itoh M; Yatagai T
    Opt Express; 2006 Feb; 14(3):1006-20. PubMed ID: 19503421
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A hierarchical framework for estimating neuroretinal rim area using 3D spectral domain optical coherence tomography (SD-OCT) optic nerve head (ONH) images of healthy and glaucoma eyes.
    Belghith A; Bowd C; Weinreb RN; Zangwill LM
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():3869-72. PubMed ID: 25570836
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Noninvasive imaging of living human skin with dual-wavelength optical coherence tomography in two and three dimensions.
    Pan Y; Farkas DL
    J Biomed Opt; 1998 Oct; 3(4):446-55. PubMed ID: 23015145
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Confocal Reflection Super-Resolution Technique to Image Golgi-Cox Stained Neurons.
    Sivaguru M; Khaw YM; Inoue M
    J Microsc; 2019 Aug; 275(2):115-130. PubMed ID: 31237354
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-definition and 3-dimensional imaging of macular pathologies with high-speed ultrahigh-resolution optical coherence tomography.
    Srinivasan VJ; Wojtkowski M; Witkin AJ; Duker JS; Ko TH; Carvalho M; Schuman JS; Kowalczyk A; Fujimoto JG
    Ophthalmology; 2006 Nov; 113(11):2054.e1-14. PubMed ID: 17074565
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anisotropic aberration correction using region of interest based digital adaptive optics in Fourier domain OCT.
    Kumar A; Kamali T; Platzer R; Unterhuber A; Drexler W; Leitgeb RA
    Biomed Opt Express; 2015 Apr; 6(4):1124-34. PubMed ID: 25908999
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A hybrid method for 3D mosaicing of OCT images of macula and Optic Nerve Head.
    Ahdi A; Rabbani H; Vard A
    Comput Biol Med; 2017 Dec; 91():277-290. PubMed ID: 29102825
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.