BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 29188185)

  • 1. Metabolic engineering of
    Ozaki A; Konishi R; Otomo C; Kishida M; Takayama S; Matsumoto T; Tanaka T; Kondo A
    Metab Eng Commun; 2017 Dec; 5():60-67. PubMed ID: 29188185
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancing 3-hydroxypropionic acid production in combination with sugar supply engineering by cell surface-display and metabolic engineering of Schizosaccharomyces pombe.
    Takayama S; Ozaki A; Konishi R; Otomo C; Kishida M; Hirata Y; Matsumoto T; Tanaka T; Kondo A
    Microb Cell Fact; 2018 Nov; 17(1):176. PubMed ID: 30424766
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Introduction of a bacterial acetyl-CoA synthesis pathway improves lactic acid production in Saccharomyces cerevisiae.
    Song JY; Park JS; Kang CD; Cho HY; Yang D; Lee S; Cho KM
    Metab Eng; 2016 May; 35():38-45. PubMed ID: 26384570
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolic Engineering of Lactobacillus plantarum for Direct l-Lactic Acid Production From Raw Corn Starch.
    Okano K; Uematsu G; Hama S; Tanaka T; Noda H; Kondo A; Honda K
    Biotechnol J; 2018 May; 13(5):e1700517. PubMed ID: 29393585
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Continuous production of d-lactic acid from cellobiose in cell recycle fermentation using β-glucosidase-displaying Escherichia coli.
    Aso Y; Tsubaki M; Dang Long BH; Murakami R; Nagata K; Okano H; Phuong Dung NT; Ohara H
    J Biosci Bioeng; 2019 Apr; 127(4):441-446. PubMed ID: 30316699
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolic engineering and adaptive evolution for efficient production of D-lactic acid in Saccharomyces cerevisiae.
    Baek SH; Kwon EY; Kim YH; Hahn JS
    Appl Microbiol Biotechnol; 2016 Mar; 100(6):2737-48. PubMed ID: 26596574
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CRISPR/Cas9-Assisted Seamless Genome Editing in Lactobacillus plantarum and Its Application in
    Zhou D; Jiang Z; Pang Q; Zhu Y; Wang Q; Qi Q
    Appl Environ Microbiol; 2019 Nov; 85(21):. PubMed ID: 31444197
    [No Abstract]   [Full Text] [Related]  

  • 8. Lactic acid production from cellobiose and xylose by engineered Saccharomyces cerevisiae.
    Turner TL; Zhang GC; Oh EJ; Subramaniam V; Adiputra A; Subramaniam V; Skory CD; Jang JY; Yu BJ; Park I; Jin YS
    Biotechnol Bioeng; 2016 May; 113(5):1075-83. PubMed ID: 26524688
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolic engineering of Bacillus subtilis for production of D-lactic acid.
    Awasthi D; Wang L; Rhee MS; Wang Q; Chauliac D; Ingram LO; Shanmugam KT
    Biotechnol Bioeng; 2018 Feb; 115(2):453-463. PubMed ID: 28986980
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Controlling Citrate Synthase Expression by CRISPR/Cas9 Genome Editing for n-Butanol Production in Escherichia coli.
    Heo MJ; Jung HM; Um J; Lee SW; Oh MK
    ACS Synth Biol; 2017 Feb; 6(2):182-189. PubMed ID: 27700055
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolic engineering of 1,2-propanediol production from cellobiose using beta-glucosidase-expressing E. coli.
    Nonaka D; Fujiwara R; Hirata Y; Tanaka T; Kondo A
    Bioresour Technol; 2021 Jun; 329():124858. PubMed ID: 33631452
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Construction of lactic acid-tolerant Saccharomyces cerevisiae by using CRISPR-Cas-mediated genome evolution for efficient D-lactic acid production.
    Mitsui R; Yamada R; Matsumoto T; Yoshihara S; Tokumoto H; Ogino H
    Appl Microbiol Biotechnol; 2020 Nov; 104(21):9147-9158. PubMed ID: 32960291
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic engineering of E. coli for improving mevalonate production to promote NADPH regeneration and enhance acetyl-CoA supply.
    Satowa D; Fujiwara R; Uchio S; Nakano M; Otomo C; Hirata Y; Matsumoto T; Noda S; Tanaka T; Kondo A
    Biotechnol Bioeng; 2020 Jul; 117(7):2153-2164. PubMed ID: 32255505
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Production of optically pure D-lactic acid from brown rice using metabolically engineered Lactobacillus plantarum.
    Okano K; Hama S; Kihara M; Noda H; Tanaka T; Kondo A
    Appl Microbiol Biotechnol; 2017 Mar; 101(5):1869-1875. PubMed ID: 27832309
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct fermentation of Jerusalem artichoke tuber powder for production of l-lactic acid and d-lactic acid by metabolically engineered Kluyveromyces marxianus.
    Bae JH; Kim HJ; Kim MJ; Sung BH; Jeon JH; Kim HS; Jin YS; Kweon DH; Sohn JH
    J Biotechnol; 2018 Jan; 266():27-33. PubMed ID: 29208409
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced D-lactic acid production from renewable resources using engineered Lactobacillus plantarum.
    Zhang Y; Vadlani PV; Kumar A; Hardwidge PR; Govind R; Tanaka T; Kondo A
    Appl Microbiol Biotechnol; 2016 Jan; 100(1):279-88. PubMed ID: 26433970
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biosynthesis of poly(2-hydroxyisovalerate-co-lactate) by metabolically engineered Escherichia coli.
    Yang JE; Kim JW; Oh YH; Choi SY; Lee H; Park AR; Shin J; Park SJ; Lee SY
    Biotechnol J; 2016 Dec; 11(12):1572-1585. PubMed ID: 27600064
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Co-culture of Lactobacillus delbrueckii and engineered Lactococcus lactis enhances stoichiometric yield of D-lactic acid from whey permeate.
    Sahoo TK; Jayaraman G
    Appl Microbiol Biotechnol; 2019 Jul; 103(14):5653-5662. PubMed ID: 31115633
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient production of L-Lactic acid by metabolically engineered Saccharomyces cerevisiae with a genome-integrated L-lactate dehydrogenase gene.
    Ishida N; Saitoh S; Tokuhiro K; Nagamori E; Matsuyama T; Kitamoto K; Takahashi H
    Appl Environ Microbiol; 2005 Apr; 71(4):1964-70. PubMed ID: 15812027
    [TBL] [Abstract][Full Text] [Related]  

  • 20. l-Lactic Acid Production via Sustainable Neutralizer-Free Route by Engineering Acid-Tolerant Yeast
    Zhang B; Li R; Yu L; Wu C; Liu Z; Bai F; Yu B; Wang L
    J Agric Food Chem; 2023 Jul; 71(29):11131-11140. PubMed ID: 37439413
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.