These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
177 related articles for article (PubMed ID: 29188486)
1. Phase-field modelling of gravity-capillary waves on a miscible interface. Vorobev A; Ivantsov A; Lyubimova T Eur Phys J E Soft Matter; 2017 Nov; 40(11):99. PubMed ID: 29188486 [TBL] [Abstract][Full Text] [Related]
2. Linear stability analysis of a horizontal phase boundary separating two miscible liquids. Kheniene A; Vorobev A Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Aug; 88(2):022404. PubMed ID: 24032846 [TBL] [Abstract][Full Text] [Related]
3. On the phase-field modelling of a miscible liquid/liquid boundary. Xie R; Vorobev A J Colloid Interface Sci; 2016 Feb; 464():48-58. PubMed ID: 26609922 [TBL] [Abstract][Full Text] [Related]
4. Phase-field modelling of a miscible system in spinning droplet tensiometer. Vorobev A; Boghi A J Colloid Interface Sci; 2016 Nov; 482():193-204. PubMed ID: 27501043 [TBL] [Abstract][Full Text] [Related]
5. Shapes and dynamics of miscible liquid/liquid interfaces in horizontal capillary tubes. Stevar MS; Vorobev A J Colloid Interface Sci; 2012 Oct; 383(1):184-97. PubMed ID: 22809545 [TBL] [Abstract][Full Text] [Related]
6. Kelvin-Helmholtz and Holmboe instabilities of a diffusive interface between miscible phases. Zagvozkin T; Vorobev A; Lyubimova T Phys Rev E; 2019 Aug; 100(2-1):023103. PubMed ID: 31574712 [TBL] [Abstract][Full Text] [Related]
7. Linear stability of a horizontal phase boundary subjected to shear motion. Kheniene A; Vorobev A Eur Phys J E Soft Matter; 2015 Jul; 38(7):77. PubMed ID: 26174431 [TBL] [Abstract][Full Text] [Related]
8. Temperature dependence of capillary dynamics: a multiphase and multicomponent adiabatic approach. Maggi F; Alonso-Marroquin F Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Nov; 88(5):053013. PubMed ID: 24329357 [TBL] [Abstract][Full Text] [Related]
9. Interfaces and fluctuations in confined polymeric liquid mixtures: from immiscible to near critical systems. Sferrazza M; Carelli C J Phys Condens Matter; 2007 Feb; 19(7):073102. PubMed ID: 22251583 [TBL] [Abstract][Full Text] [Related]
10. Evolution and Disappearance of Solvent Drops on Miscible Polymer Subphases. Stetten AZ; Treece BW; Corcoran TE; Garoff S; Przybycien TM; Tilton RD; Colloids Surf A Physicochem Eng Asp; 2018 Jun; 546():266-275. PubMed ID: 30416264 [TBL] [Abstract][Full Text] [Related]
11. Numerical study of pattern formation in miscible rotating Hele-Shaw flows. Chen CY; Chen CH; Miranda JA Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Apr; 73(4 Pt 2):046306. PubMed ID: 16711928 [TBL] [Abstract][Full Text] [Related]
12. Mixing generated by Faraday instability between miscible liquids. Amiroudine S; Zoueshtiagh F; Narayanan R Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 2):016326. PubMed ID: 22400676 [TBL] [Abstract][Full Text] [Related]
13. Waves on the surface of a vapor film under conditions of intensive heat fluxes. Sinkevich OA Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Sep; 78(3 Pt 2):036318. PubMed ID: 18851154 [TBL] [Abstract][Full Text] [Related]
14. Interfacial layering and capillary roughness in immiscible liquids. Geysermans P; Pontikis V J Chem Phys; 2010 Aug; 133(7):074706. PubMed ID: 20726662 [TBL] [Abstract][Full Text] [Related]
15. Transition point prediction in a multicomponent lattice Boltzmann model: Forcing scheme dependencies. Küllmer K; Krämer A; Joppich W; Reith D; Foysi H Phys Rev E; 2018 Feb; 97(2-1):023313. PubMed ID: 29548255 [TBL] [Abstract][Full Text] [Related]
17. Transient surface tension in miscible liquids. Lacaze L; Guenoun P; Beysens D; Delsanti M; Petitjeans P; Kurowski P Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Oct; 82(4 Pt 1):041606. PubMed ID: 21230286 [TBL] [Abstract][Full Text] [Related]
18. Cylindrical flowing-junction cell for the investigation of fluctuations and pattern-formation in miscible fluids. Croccolo F; Brogioli D; Vailati A Rev Sci Instrum; 2019 Aug; 90(8):085109. PubMed ID: 31472663 [TBL] [Abstract][Full Text] [Related]
19. Stability of gravity-capillary solitary waves on shallow water based on the fifth-order Kadomtsev-Petviashvili equation. Cho Y Phys Rev E; 2018 Jul; 98(1-1):012213. PubMed ID: 30110743 [TBL] [Abstract][Full Text] [Related]