These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
316 related articles for article (PubMed ID: 29188563)
1. Exploring GPCR-Ligand Interactions with the Fragment Molecular Orbital (FMO) Method. Chudyk EI; Sarrat L; Aldeghi M; Fedorov DG; Bodkin MJ; James T; Southey M; Robinson R; Morao I; Heifetz A Methods Mol Biol; 2018; 1705():179-195. PubMed ID: 29188563 [TBL] [Abstract][Full Text] [Related]
2. Analyzing GPCR-Ligand Interactions with the Fragment Molecular Orbital (FMO) Method. Heifetz A; James T; Southey M; Morao I; Fedorov DG; Bodkin MJ; Townsend-Nicholson A Methods Mol Biol; 2020; 2114():163-175. PubMed ID: 32016893 [TBL] [Abstract][Full Text] [Related]
3. Using the fragment molecular orbital method to investigate agonist-orexin-2 receptor interactions. Heifetz A; Aldeghi M; Chudyk EI; Fedorov DG; Bodkin MJ; Biggin PC Biochem Soc Trans; 2016 Apr; 44(2):574-81. PubMed ID: 27068972 [TBL] [Abstract][Full Text] [Related]
4. Characterising GPCR-ligand interactions using a fragment molecular orbital-based approach. Heifetz A; James T; Southey M; Morao I; Aldeghi M; Sarrat L; Fedorov DG; Bodkin MJ; Townsend-Nicholson A Curr Opin Struct Biol; 2019 Apr; 55():85-92. PubMed ID: 31022570 [TBL] [Abstract][Full Text] [Related]
5. GAMESS as a free quantum-mechanical platform for drug research. Alexeev Y; Mazanetz MP; Ichihara O; Fedorov DG Curr Top Med Chem; 2012; 12(18):2013-33. PubMed ID: 23110536 [TBL] [Abstract][Full Text] [Related]
6. Characterizing Rhodopsin-Arrestin Interactions with the Fragment Molecular Orbital (FMO) Method. Heifetz A; Townsend-Nicholson A Methods Mol Biol; 2020; 2114():177-186. PubMed ID: 32016894 [TBL] [Abstract][Full Text] [Related]
7. Guiding Medicinal Chemistry with Fragment Molecular Orbital (FMO) Method. Heifetz A; James T; Southey M; Bodkin MJ; Bromidge S Methods Mol Biol; 2020; 2114():37-48. PubMed ID: 32016885 [TBL] [Abstract][Full Text] [Related]
8. Computational Methods Used in Hit-to-Lead and Lead Optimization Stages of Structure-Based Drug Discovery. Heifetz A; Southey M; Morao I; Townsend-Nicholson A; Bodkin MJ Methods Mol Biol; 2018; 1705():375-394. PubMed ID: 29188574 [TBL] [Abstract][Full Text] [Related]
9. Accurate Scoring in Seconds with the Fragment Molecular Orbital and Density-Functional Tight-Binding Methods. Morao I; Heifetz A; Fedorov DG Methods Mol Biol; 2020; 2114():143-148. PubMed ID: 32016891 [TBL] [Abstract][Full Text] [Related]
10. Protein ligand interaction analysis against new CaMKK2 inhibitors by use of X-ray crystallography and the fragment molecular orbital (FMO) method. Takaya D; Niwa H; Mikuni J; Nakamura K; Handa N; Tanaka A; Yokoyama S; Honma T J Mol Graph Model; 2020 Sep; 99():107599. PubMed ID: 32348940 [TBL] [Abstract][Full Text] [Related]
11. Prediction of cyclin-dependent kinase 2 inhibitor potency using the fragment molecular orbital method. Mazanetz MP; Ichihara O; Law RJ; Whittaker M J Cheminform; 2011 Jan; 3(1):2. PubMed ID: 21219630 [TBL] [Abstract][Full Text] [Related]
12. The Fragment Molecular Orbital Method Reveals New Insight into the Chemical Nature of GPCR-Ligand Interactions. Heifetz A; Chudyk EI; Gleave L; Aldeghi M; Cherezov V; Fedorov DG; Biggin PC; Bodkin MJ J Chem Inf Model; 2016 Jan; 56(1):159-72. PubMed ID: 26642258 [TBL] [Abstract][Full Text] [Related]
13. [Applications of the Fragment Molecular Orbital Method in Drug Discovery]. Ishikawa T Yakugaku Zasshi; 2016; 136(1):121-30. PubMed ID: 26725679 [TBL] [Abstract][Full Text] [Related]
14. Computer-Aided Drug Design Using the Fragment Molecular Orbital Method: Current Status and Future Applications for SBDD. Takaya D Chem Pharm Bull (Tokyo); 2024; 72(9):781-786. PubMed ID: 39218702 [TBL] [Abstract][Full Text] [Related]
15. Efficiency of Homology Modeling Assisted Molecular Docking in G-protein Coupled Receptors. Bhunia SS; Saxena AK Curr Top Med Chem; 2021; 21(4):269-294. PubMed ID: 32901584 [TBL] [Abstract][Full Text] [Related]
16. Characterizing Protein-Protein Interactions with the Fragment Molecular Orbital Method. Heifetz A; Sladek V; Townsend-Nicholson A; Fedorov DG Methods Mol Biol; 2020; 2114():187-205. PubMed ID: 32016895 [TBL] [Abstract][Full Text] [Related]
17. Assessment and acceleration of binding energy calculations for protein-ligand complexes by the fragment molecular orbital method. Otsuka T; Okimoto N; Taiji M J Comput Chem; 2015 Nov; 36(30):2209-18. PubMed ID: 26400829 [TBL] [Abstract][Full Text] [Related]
18. Characterization of Ligand Binding to GPCRs Through Computational Methods. Vasile S; Esguerra M; Jespers W; Oliveira A; Sallander J; Åqvist J; Gutiérrez-de-Terán H Methods Mol Biol; 2018; 1705():23-44. PubMed ID: 29188557 [TBL] [Abstract][Full Text] [Related]
19. Protein-ligand binding affinity prediction of cyclin-dependent kinase-2 inhibitors by dynamically averaged fragment molecular orbital-based interaction energy. Takaba K; Watanabe C; Tokuhisa A; Akinaga Y; Ma B; Kanada R; Araki M; Okuno Y; Kawashima Y; Moriwaki H; Kawashita N; Honma T; Fukuzawa K; Tanaka S J Comput Chem; 2022 Jul; 43(20):1362-1371. PubMed ID: 35678372 [TBL] [Abstract][Full Text] [Related]
20. User-Friendly Quantum Mechanics: Applications for Drug Discovery. Kotev M; Sarrat L; Gonzalez CD Methods Mol Biol; 2020; 2114():231-255. PubMed ID: 32016897 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]