BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 29189118)

  • 1. Metals and Parkinson's Disease: Mechanisms and Biochemical Processes.
    Bjorklund G; Stejskal V; Urbina MA; Dadar M; Chirumbolo S; Mutter J
    Curr Med Chem; 2018; 25(19):2198-2214. PubMed ID: 29189118
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Iron and other metals in the pathogenesis of Parkinson's disease: Toxic effects and possible detoxification.
    Bjørklund G; Hofer T; Nurchi VM; Aaseth J
    J Inorg Biochem; 2019 Oct; 199():110717. PubMed ID: 31369907
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metals associated neurodegeneration in Parkinson's disease: Insight to physiological, pathological mechanisms and management.
    Raj K; Kaur P; Gupta GD; Singh S
    Neurosci Lett; 2021 May; 753():135873. PubMed ID: 33812934
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metal-triggered structural transformations, aggregation, and fibrillation of human alpha-synuclein. A possible molecular NK between Parkinson's disease and heavy metal exposure.
    Uversky VN; Li J; Fink AL
    J Biol Chem; 2001 Nov; 276(47):44284-96. PubMed ID: 11553618
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Effect of electroacupuncture intervention on levels of SOD, GSH, GSH-Px, MDA, and apoptosis of dopaminergic neurons in substantia Nigra in rats with Parkinson's disease].
    Li J; Wang LN; Xiao HL; Li X; Yang JJ
    Zhen Ci Yan Jiu; 2014 Jun; 39(3):185-91. PubMed ID: 25069193
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mitochondrial complex I inhibitor rotenone-induced toxicity and its potential mechanisms in Parkinson's disease models.
    Xiong N; Long X; Xiong J; Jia M; Chen C; Huang J; Ghoorah D; Kong X; Lin Z; Wang T
    Crit Rev Toxicol; 2012 Aug; 42(7):613-32. PubMed ID: 22574684
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In silico evidence for glutathione- and iron-related pathogeneses in Parkinson's disease.
    Yeager MP; Coleman RA
    J Neurosci Methods; 2010 Apr; 188(1):151-64. PubMed ID: 20144654
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of heavy metals in Parkinson's disease: an overview.
    Vellingiri B; Suriyanarayanan A; Abraham KS; Venkatesan D; Iyer M; Raj N; Gopalakrishnan AV
    J Neurol; 2022 Nov; 269(11):5798-5811. PubMed ID: 35900586
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of heavy metals (copper (Cu), arsenic (As), cadmium (Cd), iron (Fe) and lithium (Li)) induced neurotoxicity.
    Vellingiri B; Suriyanarayanan A; Selvaraj P; Abraham KS; Pasha MY; Winster H; Gopalakrishnan AV; G S; Reddy JK; Ayyadurai N; Kumar N; Giridharan B; P S; Rao KRSS; Nachimuthu SK; Narayanasamy A; Mahalaxmi I; Venkatesan D
    Chemosphere; 2022 Aug; 301():134625. PubMed ID: 35439490
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ferroptosis and cell death mechanisms in Parkinson's disease.
    Guiney SJ; Adlard PA; Bush AI; Finkelstein DI; Ayton S
    Neurochem Int; 2017 Mar; 104():34-48. PubMed ID: 28082232
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Role of Xenobiotics and Trace Metals in Parkinson's Disease.
    Bjørklund G; Dadar M; Chirumbolo S; Aaseth J
    Mol Neurobiol; 2020 Mar; 57(3):1405-1417. PubMed ID: 31754997
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impaired mitochondrial dynamics and function in the pathogenesis of Parkinson's disease.
    Büeler H
    Exp Neurol; 2009 Aug; 218(2):235-46. PubMed ID: 19303005
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Occupational exposure to manganese, copper, lead, iron, mercury and zinc and the risk of Parkinson's disease.
    Gorell JM; Johnson CC; Rybicki BA; Peterson EL; Kortsha GX; Brown GG; Richardson RJ
    Neurotoxicology; 1999; 20(2-3):239-47. PubMed ID: 10385887
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Pathological mechanisms of Parkinson's disease].
    Matsui H; Takahashi R
    Brain Nerve; 2009 Apr; 61(4):441-6. PubMed ID: 19378814
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Pathopharmacological Interplay between Vanadium and Iron in Parkinson's Disease Models.
    Ohiomokhare S; Olaolorun F; Ladagu A; Olopade F; Howes MR; Okello E; Olopade J; Chazot PL
    Int J Mol Sci; 2020 Sep; 21(18):. PubMed ID: 32937783
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thiol Oxidation by Diamide Leads to Dopaminergic Degeneration and Parkinsonism Phenotype in Mice: A Model for Parkinson's Disease.
    Ray A; Kambali M; Ravindranath V
    Antioxid Redox Signal; 2016 Aug; 25(5):252-67. PubMed ID: 27121974
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interaction of alpha-synuclein and dopamine metabolites in the pathogenesis of Parkinson's disease: a case for the selective vulnerability of the substantia nigra.
    Galvin JE
    Acta Neuropathol; 2006 Aug; 112(2):115-26. PubMed ID: 16791599
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of alpha-synuclein in the development of the dopaminergic neurons in the substantia nigra and ventral tegmental area.
    Tarasova TV; Lytkina OA; Roman AY; Bachurin SO; Ustyugov AA
    Dokl Biol Sci; 2016; 466():5-7. PubMed ID: 27021360
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of metals on herbicides-alpha-synuclein association: a possible factor in neurodegenerative disease studied by capillary electrophoresis.
    André C; Truong TT; Robert JF; Guillaume YC
    Electrophoresis; 2005 Sep; 26(17):3256-64. PubMed ID: 16143978
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monoamine oxidase and α-synuclein as targets in Parkinson's disease therapy.
    Follmer C
    Expert Rev Neurother; 2014 Jun; 14(6):703-16. PubMed ID: 24852232
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.