These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 29189719)

  • 1. Transcriptional and Hormonal Regulation of Weeping Trait in Salix matsudana.
    Liu J; Zeng Y; Yan P; He C; Zhang J
    Genes (Basel); 2017 Nov; 8(12):. PubMed ID: 29189719
    [TBL] [Abstract][Full Text] [Related]  

  • 2. De novo transcriptome and small RNA analysis of two Chinese willow cultivars reveals stress response genes in Salix matsudana.
    Rao G; Sui J; Zeng Y; He C; Duan A; Zhang J
    PLoS One; 2014; 9(10):e109122. PubMed ID: 25275458
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genome-wide investigation of the AP2/ERF superfamily and their expression under salt stress in Chinese willow (
    Zhang J; Shi SZ; Jiang Y; Zhong F; Liu G; Yu C; Lian B; Chen Y
    PeerJ; 2021; 9():e11076. PubMed ID: 33954030
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative gene expression analysis reveals that multiple mechanisms regulate the weeping trait in Prunus mume.
    Li L; Zhang Y; Zheng T; Zhuo X; Li P; Qiu L; Liu W; Wang J; Cheng T; Zhang Q
    Sci Rep; 2021 Jan; 11(1):2675. PubMed ID: 33514804
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcriptome profiles reveal that gibberellin-related genes regulate weeping traits in crape myrtle.
    Li S; Zheng T; Zhuo X; Li Z; Li L; Li P; Qiu L; Pan H; Wang J; Cheng T; Zhang Q
    Hortic Res; 2020; 7():54. PubMed ID: 32257240
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The genetic architecture of growth traits in
    Zhang J; Yuan H; Yang Q; Li M; Wang Y; Li Y; Ma X; Tan F; Wu R
    Hortic Res; 2017; 4():17024. PubMed ID: 28638623
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phytotoxicity of cyanide to weeping willow trees.
    Yu X; Trapp S; Zhou P
    Environ Sci Pollut Res Int; 2005; 12(2):109-13. PubMed ID: 15859117
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of AFLP and RAPD markers linked to a locus associated with twisted growth in corkscrew willow (Salix matsudana 'Tortuosa').
    Lin J; Gunter LE; Harding SA; Kopp RF; McCord RP; Tsai CJ; Tuskan GA; Smart LB
    Tree Physiol; 2007 Nov; 27(11):1575-83. PubMed ID: 17669747
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification and expression analysis of salt-responsive genes using a comparative microarray approach in Salix matsudana.
    Liu M; Qiao G; Jiang J; Han X; Sang J; Zhuo R
    Mol Biol Rep; 2014 Oct; 41(10):6555-68. PubMed ID: 24993115
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome-wide characterization and identification of Trihelix transcription factors and expression profiling in response to abiotic stresses in Chinese Willow (
    Yang J; Tang Z; Yang W; Huang Q; Wang Y; Huang M; Wei H; Liu G; Lian B; Chen Y; Zhang J
    Front Plant Sci; 2023; 14():1125519. PubMed ID: 36938039
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transporters and ascorbate-glutathione metabolism for differential cadmium accumulation and tolerance in two contrasting willow genotypes.
    Han X; Zhang Y; Yu M; Zhang J; Xu D; Lu Z; Qiao G; Qiu W; Zhuo R
    Tree Physiol; 2020 Jul; 40(8):1126-1142. PubMed ID: 32175583
    [TBL] [Abstract][Full Text] [Related]  

  • 12. P absorption and removal mechanism of new Salix clone (A42)on eutrophic water with different P concentrations.
    Cai ZY; Zhang JF; Chen GC; Zhang HD; Sun SY; Li XG; Qin GH
    Ying Yong Sheng Tai Xue Bao; 2018 Oct; 29(10):3416-3424. PubMed ID: 30325168
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of the PmWEEP locus controlling weeping traits in Prunus mume through an integrated genome-wide association study and quantitative trait locus mapping.
    Zhuo X; Zheng T; Li S; Zhang Z; Zhang M; Zhang Y; Ahmad S; Sun L; Wang J; Cheng T; Zhang Q
    Hortic Res; 2021 Jun; 8(1):131. PubMed ID: 34059642
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Seed Treatment with Biostimulants Extracted from Weeping Willow (
    Mutlu-Durak H; Yildiz Kutman B
    Plants (Basel); 2021 Jul; 10(7):. PubMed ID: 34371652
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ion absorption, distribution and salt tolerance threshold of three willow species under salt stress.
    Ran X; Huang X; Wang X; Liang H; Wang Y; Li J; Huo Z; Liu B; Ma C
    Front Plant Sci; 2022; 13():969896. PubMed ID: 35982705
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome sequencing and phylogenetic analysis of allotetraploid Salix matsudana Koidz.
    Zhang J; Yuan H; Li Y; Chen Y; Liu G; Ye M; Yu C; Lian B; Zhong F; Jiang Y; Xu J
    Hortic Res; 2020 Dec; 7(1):201. PubMed ID: 33328474
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of temperature on the rate of cyanide metabolism of two woody plants.
    Yu X; Trapp S; Zhou P; Hu H
    Chemosphere; 2005 May; 59(8):1099-104. PubMed ID: 15833483
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physiological and transcriptomic analysis provide novel insight into cobalt stress responses in willow.
    Wang YM; Yang Q; Xu H; Liu YJ; Yang HL
    Sci Rep; 2020 Feb; 10(1):2308. PubMed ID: 32047223
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-density genetic map construction and identification of a locus controlling weeping trait in an ornamental woody plant (Prunus mume Sieb. et Zucc).
    Zhang J; Zhang Q; Cheng T; Yang W; Pan H; Zhong J; Huang L; Liu E
    DNA Res; 2015 Jun; 22(3):183-91. PubMed ID: 25776277
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genome-wide transcriptional and physiological responses to drought stress in leaves and roots of two willow genotypes.
    Pucholt P; Sjödin P; Weih M; Rönnberg-Wästljung AC; Berlin S
    BMC Plant Biol; 2015 Oct; 15():244. PubMed ID: 26458893
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.