These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
43. The nature of the purine at position 34 in tRNAs of 4-codon boxes is correlated with nucleotides at positions 32 and 38 to maintain decoding fidelity. Pernod K; Schaeffer L; Chicher J; Hok E; Rick C; Geslain R; Eriani G; Westhof E; Ryckelynck M; Martin F Nucleic Acids Res; 2020 Jun; 48(11):6170-6183. PubMed ID: 32266934 [TBL] [Abstract][Full Text] [Related]
44. Genome Expansion by tRNA +1 Frameshifting at Quadruplet Codons. Gamper H; Masuda I; Hou YM J Mol Biol; 2022 Apr; 434(8):167440. PubMed ID: 34995554 [TBL] [Abstract][Full Text] [Related]
45. Quality control by the ribosome following peptide bond formation. Zaher HS; Green R Nature; 2009 Jan; 457(7226):161-6. PubMed ID: 19092806 [TBL] [Abstract][Full Text] [Related]
46. Insights into genome recoding from the mechanism of a classic +1-frameshifting tRNA. Gamper H; Li H; Masuda I; Miklos Robkis D; Christian T; Conn AB; Blaha G; Petersson EJ; Gonzalez RL; Hou YM Nat Commun; 2021 Jan; 12(1):328. PubMed ID: 33436566 [TBL] [Abstract][Full Text] [Related]
47. On concerted origin of transfer RNAs with complementary anticodons. Rodin S; Ohno S; Rodin A Orig Life Evol Biosph; 1993 Dec; 23(5-6):393-418. PubMed ID: 7509479 [TBL] [Abstract][Full Text] [Related]
48. Development of improved tRNAs for in vitro biosynthesis of proteins containing unnatural amino acids. Cload ST; Liu DR; Froland WA; Schultz PG Chem Biol; 1996 Dec; 3(12):1033-8. PubMed ID: 9000011 [TBL] [Abstract][Full Text] [Related]
50. Structural insights into +1 frameshifting promoted by expanded or modification-deficient anticodon stem loops. Maehigashi T; Dunkle JA; Miles SJ; Dunham CM Proc Natl Acad Sci U S A; 2014 Sep; 111(35):12740-5. PubMed ID: 25128388 [TBL] [Abstract][Full Text] [Related]
51. Recognition and positioning of mRNA in the ribosome by tRNAs with expanded anticodons. Walker SE; Fredrick K J Mol Biol; 2006 Jul; 360(3):599-609. PubMed ID: 16730356 [TBL] [Abstract][Full Text] [Related]
52. Structural studies of the tRNA domain of tmRNA. Stagg SM; Frazer-Abel AA; Hagerman PJ; Harvey SC J Mol Biol; 2001 Jun; 309(3):727-35. PubMed ID: 11397092 [TBL] [Abstract][Full Text] [Related]
53. Natural versus artificial creation of base pairs in DNA: origin of nucleobases from the perspectives of unnatural base pair studies. Hirao I; Kimoto M; Yamashige R Acc Chem Res; 2012 Dec; 45(12):2055-65. PubMed ID: 22263525 [TBL] [Abstract][Full Text] [Related]
54. Genetic Code Engineering by Natural and Unnatural Base Pair Systems for the Site-Specific Incorporation of Non-Standard Amino Acids Into Proteins. Kimoto M; Hirao I Front Mol Biosci; 2022; 9():851646. PubMed ID: 35685243 [TBL] [Abstract][Full Text] [Related]
55. In vitro selection of tRNAs for efficient four-base decoding to incorporate non-natural amino acids into proteins in an Escherichia coli cell-free translation system. Taira H; Hohsaka T; Sisido M Nucleic Acids Res; 2006; 34(5):1653-62. PubMed ID: 16549877 [TBL] [Abstract][Full Text] [Related]
56. Novel base-pairing interactions at the tRNA wobble position crucial for accurate reading of the genetic code. Rozov A; Demeshkina N; Khusainov I; Westhof E; Yusupov M; Yusupova G Nat Commun; 2016 Jan; 7():10457. PubMed ID: 26791911 [TBL] [Abstract][Full Text] [Related]
59. Evolution of multiple, mutually orthogonal prolyl-tRNA synthetase/tRNA pairs for unnatural amino acid mutagenesis in Escherichia coli. Chatterjee A; Xiao H; Schultz PG Proc Natl Acad Sci U S A; 2012 Sep; 109(37):14841-6. PubMed ID: 22927411 [TBL] [Abstract][Full Text] [Related]
60. Multiple incorporation of non-natural amino acids into a single protein using tRNAs with non-standard structures. Ohtsuki T; Manabe T; Sisido M FEBS Lett; 2005 Dec; 579(30):6769-74. PubMed ID: 16310775 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]