BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 29189834)

  • 1. In trans hydrolysis of carrier protein-bound acyl intermediates by CitA during citrinin biosynthesis.
    Storm PA; Townsend CA
    Chem Commun (Camb); 2017 Dec; 54(1):50-53. PubMed ID: 29189834
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polyketide synthase gene responsible for citrinin biosynthesis in Monascus purpureus.
    Shimizu T; Kinoshita H; Ishihara S; Sakai K; Nagai S; Nihira T
    Appl Environ Microbiol; 2005 Jul; 71(7):3453-7. PubMed ID: 16000748
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Methylotrophic yeast Pichia pastoris as a chassis organism for polyketide synthesis via the full citrinin biosynthetic pathway.
    Xue Y; Kong C; Shen W; Bai C; Ren Y; Zhou X; Zhang Y; Cai M
    J Biotechnol; 2017 Jan; 242():64-72. PubMed ID: 27913218
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional and Structural Analysis of Programmed C-Methylation in the Biosynthesis of the Fungal Polyketide Citrinin.
    Storm PA; Herbst DA; Maier T; Townsend CA
    Cell Chem Biol; 2017 Mar; 24(3):316-325. PubMed ID: 28238725
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Identification of a pigment-polyketide synthase gene deleted mutant of Monascus ruber M7].
    Xie N; Zhang Y; Chen F
    Wei Sheng Wu Xue Bao; 2015 Jul; 55(7):863-72. PubMed ID: 26710605
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acyl hydrolases from trans-AT polyketide synthases target acetyl units on acyl carrier proteins.
    Jenner M; Afonso JP; Kohlhaas C; Karbaum P; Frank S; Piel J; Oldham NJ
    Chem Commun (Camb); 2016 Apr; 52(30):5262-5. PubMed ID: 27003309
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Orf6 gene encoded glyoxalase involved in mycotoxin citrinin biosynthesis in Monascus purpureus YY-1.
    Liang B; Du X; Li P; Guo H; Sun C; Gao J; Wang S
    Appl Microbiol Biotechnol; 2017 Oct; 101(19):7281-7292. PubMed ID: 28831532
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Elimination of the mycotoxin citrinin production in the industrial important strain Monascus purpureus SM001.
    Jia XQ; Xu ZN; Zhou LP; Sung CK
    Metab Eng; 2010 Jan; 12(1):1-7. PubMed ID: 19699814
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The ctnG gene encodes carbonic anhydrase involved in mycotoxin citrinin biosynthesis from Monascus aurantiacus.
    Li YP; Tang X; Wu W; Xu Y; Huang ZB; He QH
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2015; 32(4):577-83. PubMed ID: 25482072
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MptriA, an Acetyltransferase Gene Involved in Pigment Biosynthesis in M. purpureus YY-1.
    Liang B; Du X; Li P; Sun C; Wang S
    J Agric Food Chem; 2018 Apr; 66(16):4129-4138. PubMed ID: 29633617
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploring the distribution of citrinin biosynthesis related genes among Monascus species.
    Chen YP; Tseng CP; Chien IL; Wang WY; Liaw LL; Yuan GF
    J Agric Food Chem; 2008 Dec; 56(24):11767-72. PubMed ID: 19012408
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetic localization and in vivo characterization of a Monascus azaphilone pigment biosynthetic gene cluster.
    Balakrishnan B; Karki S; Chiu SH; Kim HJ; Suh JW; Nam B; Yoon YM; Chen CC; Kwon HJ
    Appl Microbiol Biotechnol; 2013 Jul; 97(14):6337-45. PubMed ID: 23504076
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lower citrinin production by gene disruption of ctnB involved in citrinin biosynthesis in Monascus aurantiacus Li AS3.4384.
    Li YP; Pan YF; Zou LH; Xu Y; Huang ZB; He QH
    J Agric Food Chem; 2013 Jul; 61(30):7397-402. PubMed ID: 23841779
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative Proteomics Analysis by Sequential Window Acquisition of All Theoretical Mass Spectra-Mass Spectrometry Reveals Inhibition Mechanism of Pigments and Citrinin Production of
    Zhou B; Ma Y; Tian Y; Li J; Zhong H
    J Agric Food Chem; 2020 Jan; 68(3):808-817. PubMed ID: 31870144
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Binding and "pKa" modulation of a polycyclic substrate analogue in a type II polyketide acyl carrier protein.
    Haushalter RW; Filipp FV; Ko KS; Yu R; Opella SJ; Burkart MD
    ACS Chem Biol; 2011 May; 6(5):413-8. PubMed ID: 21268653
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploring Fungal Polyketide C-Methylation through Combinatorial Domain Swaps.
    Storm PA; Pal P; Huitt-Roehl CR; Townsend CA
    ACS Chem Biol; 2018 Nov; 13(11):3043-3048. PubMed ID: 30350943
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence for a protein-protein interaction motif on an acyl carrier protein domain from a modular polyketide synthase.
    Weissman KJ; Hong H; Popovic B; Meersman F
    Chem Biol; 2006 Jun; 13(6):625-36. PubMed ID: 16793520
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification and in vivo functional analysis by gene disruption of ctnA, an activator gene involved in citrinin biosynthesis in Monascus purpureus.
    Shimizu T; Kinoshita H; Nihira T
    Appl Environ Microbiol; 2007 Aug; 73(16):5097-103. PubMed ID: 17586673
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Delineating citrinin biosynthesis: Ctn-ORF3 dioxygenase-mediated multi-step methyl oxidation precedes a reduction-mediated pyran ring cyclization.
    Balakrishnan B; Chandran R; Park SH; Kwon HJ
    Bioorg Med Chem Lett; 2016 Jan; 26(2):392-396. PubMed ID: 26707397
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of mokB involved in monacolin K biosynthesis in Monascus pilosus.
    Sakai K; Kinoshita H; Nihira T
    Biotechnol Lett; 2009 Dec; 31(12):1911-6. PubMed ID: 19693441
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.